• Title/Summary/Keyword: Zirconia surface

Search Result 394, Processing Time 0.021 seconds

Acid etching of glass-infiltrated zirconia and its biological response

  • Vu, Van Thi;Oh, Gye-Jeong;Yun, Kwi-Dug;Lim, Hyun-Pil;Kim, Ji-Won;Nguyen, Thao Phuong Thi;Park, Sang-Won
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.2
    • /
    • pp.104-109
    • /
    • 2017
  • PURPOSE. The purpose of this study was to evaluate the influence of acid etching treatment on surface characteristics and biological response of glass-infiltrated zirconia. MATERIALS AND METHODS. A hundred zirconia specimens were divided into four groups depending on surface treatments: untreated zirconia (group Z); acid-etched zirconia (group ZE); glass-infiltrated zirconia (group ZG); and glass-infiltrated and acid-etched zirconia (group ZGE). Surface roughness, surface topography, surface morphology, and Vickers hardness of specimens were evaluated. For biological response test, MC3T3-E1 cell attachment and proliferation on surface of the specimens were examined. The data were statistically analyzed using one-way ANOVA and Tukey's HSD test at a significance level of 0.05. RESULTS. Group ZGE showed the highest surface roughness ($Ra=1.54{\mu}m$) compared with other groups (P < .05). Meanwhile, the hardness of group Z was significantly higher than those of other groups (P < .05). Cell attachment and cell proliferation were significantly higher in group ZGE (P < .05). CONCLUSION. We concluded that effective surface roughness on zirconia could be made by acid etching treatment after glass infiltration. This surface showed significantly enhanced osteoblast cell response.

Comparison of surface topography and roughness in different yttrium oxide compositions of dental zirconia after grinding and polishing

  • Shin, Hyun-Sub;Lee, Joon-Seok
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.4
    • /
    • pp.258-267
    • /
    • 2021
  • PURPOSE. The purpose of this study was to compare the surface roughness, phase transformation, and surface topography of dental zirconia with three different yttrium oxide compositions under same grinding and polishing conditions. MATERIALS AND METHODS. Three zirconia disks (IPS e.max ZirCAD LT, MT, MT multi, Ivoclar Vivadent AG, Schaan, Liechtenstein) were selected for experimental materials. Sixty-nine bar-shaped specimens were fabricated as 12.0 × 6.0 × 4.0 mm using a milling machine and glazing was conducted on 12.0 × 6.0 mm surface by same operator. With a custom polishing device, 12.0 × 6.0 mm surfaces were polished under same condition. Surface roughness (Ra[㎛]) was measured before grinding (C), after grinding (G), and at every 3 steps of polishing (P1, P2, P3). X-ray diffraction and FE-SEM observation was conducted before grinding, after grinding, and after fine polishing (P3). Statistical analysis of surface roughness was performed using Kruskal-Wallis test and Mann-Whitney-U test was used as a post hoc test (α = .05). RESULTS. There were no significant differences of surface roughness between LT, MT, and MM groups. In LT, MT, and MM groups, P3 groups showed significantly lower surface roughness than C groups. X-ray diffraction showed grinding and polishing didn't lead to phase transformation on zirconia surface. In FE-SEM images, growths in grain size of zirconia were observed as yttrium oxide composition increases. CONCLUSION. Polished zirconia surface showed clinically acceptable surface roughness, but difference in yttrium oxide composition had no significant influence on the surface roughness. Therefore, in clinical situation, zirconia polishing burs could be used regardless of yttrium oxide composition.

Bonding strength of resin and porcelain depending on the effects of zirconia surface etching (지르코니아 표면 에칭처리 효과에 따른 레진 및 도재의 결합강도)

  • Park, Young-Dae;Han, Sok-Yoon
    • Journal of Technologic Dentistry
    • /
    • v.39 no.4
    • /
    • pp.243-251
    • /
    • 2017
  • Purpose: The purpose of this study was to investigate the effects of etching by monitoring the etched surfaces and the shear bonding strength of resin and porcelain with etched zirconia. Methods: The CAD/CAM was used to produce 24 zirconia blocks in groups of six. The zirconia specimen surfaces were sandblasted, and they were then divided into 12 specimens with surface etching and 12 specimens without etching for the control group. 12 specimens of composite resin were bonded using a curing light, and 12 specimens of porcelain underwent vita porcelain build-up sintering and the shear bonding strength was measured using a universal testing system. The SEM photographs were taken in order to observe any differences in the surfaces before and after etching, and they were magnified by a factor of 8 in order to observe fractured surface types. Results: The results of the shear bonding strength measurements are as follows: For the composite resin tests, between zirconia and resin, the shear bonding strength of the control group (NZR) without surface etching was 4.68 Mpa and the experimental group (EZC) with surface etching was 9.65 Mpa, which is significantly higher. The crystal structure of the zirconia was confirmed to be different in observations of the surfaces before and after etching. Conclusion : In comparing the shear bonding strength of zirconia and composite resin, the effects of etching were found to be significant. The effects of surface etching were also observed in fractured surfaces between zirconia and porcelain. This is expected to be applicable to various prosthetics as surface etching on zirconia is used in clinics.

Synthesis and Characterization of High Surface Area of Zirconia: Effect of pH (고비표면적 지르코니움 산화물의 제조 및 특성 분석: pH 영향)

  • Jeong, Ye-Seul;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.133-141
    • /
    • 2019
  • High specific surface area zirconia with acid-basic property was synthesized by precipitation using reflux method or hydrothermal synthesis method using ammonium hydroxide solution as precipitant in the range of pH of Zr solution from 2 to 10. The prepared zirconia was characterized by the nitrogen adsorption, X-ray diffraction (XRD), isopropanol temperature programmed desorption (IPA-TPD), scanning electron microscopy and X-ray photoelectron spectroscopy, and the catalytic activity in the IPA decomposition reaction was correlated with the acid-basic properties. When using reflux method, high pH of Zr solution was required to obtain high fraction of tetragonal zirconia, and pure tetragonal zirconia was possible at pH 9 or higher. High pH was required to obtain high specific surface area zirconia, and the hydrous zirconia synthesized at pH 10 had high specific surface area zirconia of $260m^2g^{-1}$ even after calcination at $600^{\circ}C$. However, hydrothermal synthesis with high pressure under the same conditions resulted in very low specific surface area below $40m^2g^{-1}$ and monoclinic phase zirconia was synthesized. High pH of the solution was required to obtain high specific surface area tetragonal phase zirconia. In hydrothermal synthesis requiring high pressure, monoclinic zirconia was produced irrespective of the pH of the solution, and the specific surface area was relatively low. Zirconia with high specific surface area and tetragonal phase was predominantly acidic compared to basicity and only propylene, which was observed as selective dehydration reaction in IPA decomposition reaction, was produced.

Effect of sintering programs and surface treatments on monolithic zirconia

  • Seren Nur Dokuzlu ;Meryem Gulce Subasi
    • The Journal of Advanced Prosthodontics
    • /
    • v.16 no.1
    • /
    • pp.25-37
    • /
    • 2024
  • PURPOSE. To investigate the effect of sintering programs and surface treatments on surface properties, phase transformation and flexural strength of monolithic zirconia. MATERIALS AND METHODS. Zirconia specimens were sintered using three distinct sintering programs [classic (C), speed (S), and superspeed (SS)] (n = 56, each). One sample from each group underwent scanning electron microscopy (SEM) and grain size analysis following sintering. Remaining samples were divided into five subgroups (n = 11) based on the surface treatments: control (CL), polish (P), glaze (G), grind + polish (GP), and grind + glaze (GG). One sample from each subgroup underwent SEM analysis. Remaining samples were thermally aged. Monoclinic phase volume, surface roughness, and three-point flexural strength were measured. Monoclinic phase volume and surface roughness were analyzed by Kruskal-Wallis and Dunn tests. Flexural strength was analyzed by two-way ANOVA and Weibull analysis. The relationships among the groups were analyzed using Spearman's correlation analysis. RESULTS. Sintering program, surface treatment, and sintering × surface treatment (P ≤ .010) affected the monoclinic phase volume, whereas the type of surface treatment and sintering × surface treatment affected the surface roughness (P < .001). Type of sintering program or surface treatment did not affect the flexural strength. Weibull analysis revealed no significant differences between the m and σo values. Monoclinic phase volume was positively correlated with surface roughness in the SGG and SSP groups. CONCLUSION. After sintering monolithic zirconia in each of the three sintering programs, each of the surface treatments can be used. However, for surface quality and aging resistance, G or GG can be recommended as a surface finishing method.

Effect of various intraoral repair systems on the shear bond strength of composite resin to zirconia

  • Han, In-Hae;Kang, Dong-Wan;Chung, Chae-Heon;Choe, Han-Cheol;Son, Mee-Kyoung
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.248-255
    • /
    • 2013
  • PURPOSE. This study compared the effect of three intraoral repair systems on the bond strength between composite resin and zirconia core. MATERIALS AND METHODS. Thirty zirconia specimens were divided into three groups according to the repair method: Group I-CoJet$^{TM}$ Repair System (3M ESPE) [chairside silica coating with $30{\mu}m$ $SiO_2$ + silanization + adhesive]; Group II-Ceramic Repair System (Ivoclar Vivadent) [etching with 37% phosphoric acid + Zirconia primer + adhesive]; Group III-Signum Zirconia Bond (Heraus) [Signum Zirconia Bond I + Signum Zirconia Bond II]. Composite resin was polymerized on each conditioned specimen. The shear bond strength was tested using a universal testing machine, and fracture sites were examined with FE-SEM. Surface morphology and wettability after surface treatments were examined additionally. The data of bond strengths were statistically analyzed with one-way ANOVA and Tamhane post hoc test (${\alpha}$=.05). RESULTS. Increased surface roughness and the highest wettability value were observed in the CoJet sand treated specimens. The specimens treated with 37% phosphoric acid and Signum Zirconia Bond I did not show any improvement of surface irregularity, and the lowest wettability value were found in 37% phosphoric acid treated specimens. There was no significant difference in the bond strengths between Group I ($7.80{\pm}0.76$ MPa) and III ($8.98{\pm}1.39$ MPa). Group II ($3.21{\pm}0.78$ MPa) showed a significant difference from other groups (P<.05). CONCLUSION. The use of Intraoral silica coating system and the application of Signum Zirconia Bond are effective for increasing the bond strength of composite resin to zirconia.

Shear bond strength of a layered zirconia and porcelain according to treatment of zirconia liner (치과용 지르코니아 이장재 처리에 따른 지르코니아와 도재의 전단결합강도 비교)

  • Seo, Jeong Il;Park, Won Uk;Kim, Yang Geun
    • Journal of Technologic Dentistry
    • /
    • v.39 no.1
    • /
    • pp.43-52
    • /
    • 2017
  • Purpose: Physical and chemical properties of gold is most suitable to be restored of teeth to its original state. Recently zirconia was used instead of gold because of esthetical and intimacy of human body. Because of high strength and high abrasion resistance of zirconia, all zirconia artificial tooth lead to wear the original tooth of opposite site. To preserve this original tooth, zirconia artificial tooth covered with dental ceramic glass was used. When joining the zirconia core and dental ceramic glass, difference of their thermal expansion coefficient and wetting ability is generated the residual stress at interface lead to crack. In order to solve this problem, intermediate layer what is called zir-liner was imported to decrease the residual stress and increase the bonding strength. Methods: In this study, to identify the optimum conditions for manufacturing process, various methods to rough the surface of zirconia core were adopted, and vary the thickness of interlayer, and analyzed bond strength. Results: Bond strength of sanding specimens group showed higher than that of non-sanding specimens group, and once applied intermediate layer with sanding specimens showed highest bond strength with 28 MPa. SEM photomicrographs of zirconia cores fired at $1500^{\circ}C$ showed parallel straight lines in sanding and pockmarked surface in blasting surfaces as abrasion traces. Observation of the destruction section after shear test by SEM were carried out. Liner applied non-sanding group and non-liner applied sanding group all showed interfacial crack. Sandblasting group with non-liner showed remained dental ceramic glass on the surface of zirconia. Sandblasting group with once applied liner showed partially remained liner and dental ceramic glass on the surface of zirconia. XRD analysis revealed that sandblasting group showed higher monoclinic peaks than other specimens group and this result was due to the high collision energy for stress induced phase transformation. Conclusions: A study on the improvement of bonding strength between zirconia and dental ceramic glass steadily carried out for the future to practical use.

Preparation of Alumina Coated Zirconia Powder by Hydrolysis of Aluminum Butoxide (가수분해법에 의한 알루미나 코팅 지르코니아 분말의 제조)

  • Lee, Jong-Kook;Kim, Yoon-Soo;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1401-1407
    • /
    • 1995
  • Zirconia powder coated with alumina was prepared by hydrolysis of alumina butoxide. The coated powder was obtained by a hydrolysis reaction between the adsorbed water on the surface of zirconia particles and aluminum sec-butoxide. Amorphous aluminum hydroxide was uniformly coated on the surface of zirconia particles with the thickness of about 30 nm. The shape and distribution of aluminum hydroxide was varied with an existence of surfactant. The coated layer of aluminum hydroxide consists of the fine particle size, and the zirconia powder coated by alumina hydroxide have the large specific surface area of 120 $m^2$/g, compared with that of starting zirconia powder.

  • PDF

Shear bond strength of indirect composite material to monolithic zirconia

  • Sari, Fatih;Secilmis, Asli;Simsek, Irfan;Ozsevik, Semih
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.4
    • /
    • pp.267-274
    • /
    • 2016
  • PURPOSE. This study aimed to evaluate the effect of surface treatments on bond strength of indirect composite material (Tescera Indirect Composite System) to monolithic zirconia (inCoris TZI). MATERIALS AND METHODS. Partially stabilized monolithic zirconia blocks were cut into with 2.0 mm thickness. Sintered zirconia specimens were divided into different surface treatment groups: no treatment (control), sandblasting, glaze layer & hydrofluoric acid application, and sandblasting + glaze layer & hydrofluoric acid application. The indirect composite material was applied to the surface of the monolithic zirconia specimens. Shear bond strength value of each specimen was evaluated after thermocycling. The fractured surface of each specimen was examined with a stereomicroscope and a scanning electron microscope to assess the failure types. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey LSD tests (${\alpha}$=.05). RESULTS. Bond strength was significantly lower in untreated specimens than in sandblasted specimens (P<.05). No difference between the glaze layer and hydrofluoric acid application treated groups were observed. However, bond strength for these groups were significantly higher as compared with the other two groups (P<.05). CONCLUSION. Combined use of glaze layer & hydrofluoric acid application and silanization are reliable for strong and durable bonding between indirect composite material and monolithic zirconia.

Shear bond strength analysis of PFM metal and zirconia with different surface condition (PFM metal과 zirconia의 표면상태에 따른 전단결합강도 분석)

  • Jung, Jae-Kwan;Kim, Kyung-Ah;Lee, Su-Ok;Kim, Ki-Baek;Kim, Jae-Hong;Kim, Il-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4329-4335
    • /
    • 2014
  • This study examined the effects of the shear bond strength when the surface condition of the metal and zirconia, each being the lower structures, was different when determining the bond strength (metal group) of the metal lower structure with upper ceramics, and the shear bond strength (zirconia group) of zirconia lower structure with the upper ceramics in prosthetic appliances of metal-ceramic crown and zirconia-ceramic crowns. The metal groups were divided into a total of four groups: the group with no condition on the metal surface(NM), the group with sand-blasting(SM), the group with applied opaque ceramics(OM), and the group with applied opaque ceramics and sand-blasting(SOM). The zirconia groups were also separated into four groups: the group with no condition(NZ), the group with sand-blasting(SZ), the group treated with ZirLiner on the zirconia surface(LZ), and the group applied with ZirLiner along and sand-blasting(SLZ). To examine the effects on the shear bond strength according to the surface condition of each of the four metal and zirconia groups, SPSS was used to conduct one-way ANOVA. For metal-ceramic crowns, it would be best to apply opaque ceramics after sand-blasting on the surface of the metal, the lower structure. For zirconia-ceramic crowns, it is recommended to apply the ZirLiner after sand-blasting on the surface of zirconia, the lower structure.