DOI QR코드

DOI QR Code

Effect of sintering programs and surface treatments on monolithic zirconia

  • Received : 2023.09.15
  • Accepted : 2024.02.13
  • Published : 2024.02.29

Abstract

PURPOSE. To investigate the effect of sintering programs and surface treatments on surface properties, phase transformation and flexural strength of monolithic zirconia. MATERIALS AND METHODS. Zirconia specimens were sintered using three distinct sintering programs [classic (C), speed (S), and superspeed (SS)] (n = 56, each). One sample from each group underwent scanning electron microscopy (SEM) and grain size analysis following sintering. Remaining samples were divided into five subgroups (n = 11) based on the surface treatments: control (CL), polish (P), glaze (G), grind + polish (GP), and grind + glaze (GG). One sample from each subgroup underwent SEM analysis. Remaining samples were thermally aged. Monoclinic phase volume, surface roughness, and three-point flexural strength were measured. Monoclinic phase volume and surface roughness were analyzed by Kruskal-Wallis and Dunn tests. Flexural strength was analyzed by two-way ANOVA and Weibull analysis. The relationships among the groups were analyzed using Spearman's correlation analysis. RESULTS. Sintering program, surface treatment, and sintering × surface treatment (P ≤ .010) affected the monoclinic phase volume, whereas the type of surface treatment and sintering × surface treatment affected the surface roughness (P < .001). Type of sintering program or surface treatment did not affect the flexural strength. Weibull analysis revealed no significant differences between the m and σo values. Monoclinic phase volume was positively correlated with surface roughness in the SGG and SSP groups. CONCLUSION. After sintering monolithic zirconia in each of the three sintering programs, each of the surface treatments can be used. However, for surface quality and aging resistance, G or GG can be recommended as a surface finishing method.

Keywords

Acknowledgement

The authors thank Mehmet Akkas for performing SEM analysis, Mustafa Yesil for performing the thermal aging process, Dr. Ihsan Aksit for performing XRD analysis, Prof. Dr. Alaattin Kacal for providing the roughness device, and Esetron for providing the universal testing machine.

References

  1. Manicone PF, Rossi Iommetti P, Raffaelli L. An overview of zirconia ceramics: basic properties and clinical applications. J Dent 2007;35:819-26.  https://doi.org/10.1016/j.jdent.2007.07.008
  2. Alao AR, Stoll R, Song XF, Miyazaki T, Hotta Y, Shibata Y, Yin L. Surface quality of yttria-stabilized tetragonal zirconia polycrystal in CAD/CAM milling, sintering, polishing and sandblasting processes. J Mech Behav Biomed Mater 2017;65:102-16.  https://doi.org/10.1016/j.jmbbm.2016.08.021
  3. Preis V, Weiser F, Handel G, Rosentritt M. Wear performance of monolithic dental ceramics with different surface treatments. Quintessence Int 2013;44:393-405. 
  4. Caglar I, Ates SM, Yesil Duymus Z. The effect of various polishing systems on surface roughness and phase transformation of monolithic zirconia. J Adv Prosthodont 2018;10:132-7.  https://doi.org/10.4047/jap.2018.10.2.132
  5. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater 2008;24:299-307.  https://doi.org/10.1016/j.dental.2007.05.007
  6. Iseri U, Ozkurt Z, Yalniz A, Kazazoglu E. Comparison of different grinding procedures on the flexural strength of zirconia. J Prosthet Dent 2012;107:309-15.  https://doi.org/10.1016/S0022-3913(12)60081-X
  7. Kosmac T, Oblak C, Jevnikar P, Funduk N, Marion L. Strength and reliability of surface treated Y-TZP dental ceramics. J Biomed Mater Res 2000;53:304-13.  https://doi.org/10.1002/1097-4636(2000)53:4<304::AID-JBM4>3.0.CO;2-S
  8. Cotes C, Arata A, Melo RM, Bottino MA, Machado JP, Souza RO. Effects of aging procedures on the topographic surface, structural stability, and mechanical strength of a ZrO2-based dental ceramic. Dent Mater 2014;30:e396-404.  https://doi.org/10.1016/j.dental.2014.08.380
  9. Inokoshi M, Vanmeensel K, Zhang F, De Munck J, Eliades G, Minakuchi S, Naert I, Van Meerbeek B, Vleugels J. Aging resistance of surface-treated dental zirconia. Dent Mater 2015;31:182-94.  https://doi.org/10.1016/j.dental.2014.11.018
  10. Munoz EM, Longhini D, Antonio SG, Adabo GL. The effects of mechanical and hydrothermal aging on microstructure and biaxial flexural strength of an anterior and a posterior monolithic zirconia. J Dent 2017;63:94-102.  https://doi.org/10.1016/j.jdent.2017.05.021
  11. Borchers L, Stiesch M, Bach FW, Buhl JC, Hubsch C, Kellner T, Kohorst P, Jendras M. Influence of hydrothermal and mechanical conditions on the strength of zirconia. Acta Biomater 2010;6:4547-52.  https://doi.org/10.1016/j.actbio.2010.07.025
  12. Souza RO, Valandro LF, Melo RM, Machado JP, Bottino MA, Ozcan M. Air-particle abrasion on zirconia ceramic using different protocols: effects on biaxial flexural strength after cyclic loading, phase transformation and surface topography. J Mech Behav Biomed Mater 2013;26:155-63.  https://doi.org/10.1016/j.jmbbm.2013.04.018
  13. Kosmac T, Oblak C, Jevnikar P, Funduk N, Marion L. The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic. Dent Mater 1999;15:426-33.  https://doi.org/10.1016/S0109-5641(99)00070-6
  14. Stawarczyk B, Ozcan M, Hallmann L, Ender A, Mehl A, Hammerlet CH. The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clin Oral Investig 2013;17:269-74.  https://doi.org/10.1007/s00784-012-0692-6
  15. Mai HN, Hong SH, Kim SH, Lee DH. Effects of different finishing/polishing protocols and systems for monolithic zirconia on surface topography, phase transformation, and biofilm formation. J Adv Prosthodont 2019;11:81-7.  https://doi.org/10.4047/jap.2019.11.2.81
  16. Zucuni CP, Guilardi LF, Rippe MP, Pereira GKR, Valandro LF. Fatigue strength of yttria-stabilized zirconia polycrystals: Effects of grinding, polishing, glazing, and heat treatment. J Mech Behav Biomed Mater 2017;75:512-20.  https://doi.org/10.1016/j.jmbbm.2017.06.016
  17. Zucuni CP, Pereira GKR, Valandro LF. Grinding, polishing and glazing of the occlusal surface do not affect the load-bearing capacity under fatigue and survival rates of bonded monolithic fully-stabilized zirconia simplified restorations. J Mech Behav Biomed Mater 2020;103:103528. 
  18. DE Souza RH, Kaizer MR, Borges CEP, Fernandes ABF, Correr GM, DiOgenes AN, Zhang Y, Gonzaga CC. Flexural strength and crystalline stability of a monolithic translucent zirconia subjected to grinding, polishing and thermal challenges. Ceram Int 2020;46:26168-26175.  https://doi.org/10.1016/j.ceramint.2020.07.114
  19. Mesic K, Majnaric I, Obhodas J, Barsic G, Mehulic K. The effect of aging on composition and surface of translucent zirconia ceramic. Acta Stomatol Croat 2020;54:339-52.  https://doi.org/10.15644/asc54/4/1
  20. Vila-Nova TEL, Gurgel de Carvalho IH, Moura DMD, Batista AUD, Zhang Y, Paskocimas CA, Bottino MA, de Assuncao E Souza RO. Effect of finishing/polishing techniques and low temperature degradation on the surface topography, phase transformation and flexural strength of ultra-translucent ZrO2 ceramic. Dent Mater 2020;36:e126-39.  https://doi.org/10.1016/j.dental.2020.01.004
  21. Cardoso KV, Adabo GL, Mariscal-Munoz E, Antonio SG, Arioli Filho JN. Effect of sintering temperature on microstructure, flexural strength, and optical properties of a fully stabilized monolithic zirconia. J Prosthet Dent 2020;124:594-8.  https://doi.org/10.1016/j.prosdent.2019.08.007
  22. Grambow J, Wille S, Kern M. Impact of changes in sintering temperatures on characteristics of 4YSZ and 5YSZ. J Mech Behav Biomed Mater 2021;120:104586. 
  23. Juntavee N, Uasuwan P. Flexural strength of different monolithic computer-assisted design and computer-assisted manufacturing ceramic materials upon different thermal tempering processes. Eur J Dent 2020;14:566-74.  https://doi.org/10.1055/s-0040-1713957
  24. Juntavee N, Uasuwan P. Influence of thermal tempering processes on color characteristics of different monolithic computer-assisted design and computer-assisted manufacturing ceramic materials. J Clin Exp Dent 2019;11:e614-24.  https://doi.org/10.4317/jced.55869
  25. Kwon WC, Park MG. Evaluation of mechanical properties of dental zirconia in different milling conditions and sintering temperatures. J Prosthet Dent 2023;130:909-16.  https://doi.org/10.1016/j.prosdent.2021.12.006
  26. Li L, Qiu Y, Si W. Super-speed sintered dental zirconia for chair-side one-visit application. Austin J Nutri Food Sci 2018;6:1105. 
  27. Durkan R, Deste Gokay G, Simsek H, Yilmaz B. Biaxial flexural strength and phase transformation characteristics of dental monolithic zirconia ceramics with different sintering durations: An in vitro study. J Prosthet Dent 2022;128:498-504.  https://doi.org/10.1016/j.prosdent.2021.04.003
  28. Kong MC, Park MG. Effect of sintering condition and low-temperature degradation on the flexural strength and phase transformation of zirconia. J Prosthet Dent 2021;126:692.e1-14.  https://doi.org/10.1016/j.prosdent.2021.07.027
  29. Liu H, Inokoshi M, Nozaki K, Shimizubata M, Nakai H, Cho Too TD, Minakuchi S. Influence of high-speed sintering protocols on translucency, mechanical properties, microstructure, crystallography, and low-temperature degradation of highly translucent zirconia. Dent Mater 2022;38:451-68.  https://doi.org/10.1016/j.dental.2021.12.028
  30. Oyar P, Durkan R, Deste G. Effects of sintering time and hydrothermal aging on the mechanical properties of monolithic zirconia ceramic systems. J Prosthet Dent 2021;126:688-91.  https://doi.org/10.1016/j.prosdent.2020.09.006
  31. Hafezeqoran A, Sabanik P, Koodaryan R, Ghalili KM. Effect of sintering speed, aging processes, and different surface treatments on the optical and surface properties of monolithic zirconia restorations. J Prosthet Dent 2023;130:917-26.  https://doi.org/10.1016/j.prosdent.2021.12.005
  32. inCoris TZI. Translucent zirconia ceramic blocks and discs for CEREC and inLab Processing instructions: Restoration production for crowns and bridges. Sirona Dental Systems GmbH, Germany, 2016; p:1-22. 
  33. Gale MS, Darvell BW. Thermal cycling procedures for laboratory testing of dental restorations. J Dent 1999;27:89-99.  https://doi.org/10.1016/S0300-5712(98)00037-2
  34. Garvie RC, Nicholson PS. Phase analysis in zirconia systems. J Am Ceram Soc 1972;55:303-5.  https://doi.org/10.1111/j.1151-2916.1972.tb11290.x
  35. ISO 6872. Dentistry-ceramic materials. International Standards Organization (ISO); Geneva; Switzerland, 2008. 
  36. Fischer J, Stawarczyk B, Hammerle CH. Flexural strength of veneering ceramics for zirconia. J Dent 2008;36:316-21.  https://doi.org/10.1016/j.jdent.2008.01.017
  37. Bona AD, Anusavice KJ, DeHoff PH. Weibull analysis and flexural strength of hot-pressed core and veneered ceramic structures. Dent Mater 2003;19:662-9.  https://doi.org/10.1016/S0109-5641(03)00010-1
  38. Asaad R, Aboushahba M. Influence of different sintering protocols on translucency and fracture resistance of monolithic zirconia crowns. Egyptian Dent J 2020;66:2649-60.  https://doi.org/10.21608/edj.2020.42653.1257
  39. Amat NF, Muchtar A, Amril MS, Ghazali MJ, Yahaya N. Effect of sintering temperature on the aging resistance and mechanical properties of monolithic zirconia. J Mater Res Technol 2019;8:1092-101.  https://doi.org/10.1016/j.jmrt.2018.07.017
  40. Stawarczyk B, Emslander A, Roos M, Sener B, Noack F, Keul C. Zirconia ceramics, their contrast ratio and grain size depending on sintering parameters. Dent Mater J 2014;33:591-8.  https://doi.org/10.4012/dmj.2014-056
  41. Hjerppe J, Vallittu PK, Froberg K, Lassila LV. Effect of sintering time on biaxial strength of zirconium dioxide. Dent Mater 2009;25:166-71.  https://doi.org/10.1016/j.dental.2008.05.011
  42. Ozturk C, Can G. Effect of sintering parameters on the mechanical properties of monolithic zirconia. J Dent Res Dent Clin Dent Prospects 2019;13:247-52.  https://doi.org/10.15171/joddd.2019.038
  43. Shen J, Xie H, Wu X, Yang J, Liao M, Chen C. Evaluation of the effect of low-temperature degradation on the translucency and mechanical properties of ultra-transparent 5Y-TZP ceramics. Ceram Int 2019;46:553-9.  https://doi.org/10.1016/j.ceramint.2019.09.002
  44. Siarampi E, Kontonasaki E, Andrikopoulos KS, Kantiranis N, Voyiatzis GA, Zorba T, Paraskevopoulos KM, Koidis P. Effect of in vitro aging on the flexural strength and probability to fracture of Y-TZP zirconia ceramics for all-ceramic restorations. Dent Mater 2014;30:e306-16.  https://doi.org/10.1016/j.dental.2014.05.033
  45. Ebeid K, Wille S, Hamdy A, Salah T, El-Etreby A, Kern M. Effect of changes in sintering parameters on monolithic translucent zirconia. Dent Mater 2014;30:e419-24.  https://doi.org/10.1016/j.dental.2014.09.003
  46. Preis V, Schmalzbauer M, Bougeard D, Schneider-Feyrer S, Rosentritt M. Surface properties of monolithic zirconia after dental adjustment treatments and in vitro wear simulation. J Dent 2015;43:133-9.  https://doi.org/10.1016/j.jdent.2014.08.011
  47. De Souza GM, Zykus A, Ghahnavyeh RR, Lawrence SK, Bahr DF. Effect of accelerated aging on dental zirconia-based materials. J Mech Behav Biomed Mater 2017;65:256-63.  https://doi.org/10.1016/j.jmbbm.2016.08.023
  48. Flinn BD, Raigrodski AJ, Mancl LA, Toivola R, Kuykendall T. Influence of aging on flexural strength of translucent zirconia for monolithic restorations. J Prosthet Dent 2017;117:303-9.  https://doi.org/10.1016/j.prosdent.2016.06.010
  49. Kohorst P, Borchers L, Strempel J, Stiesch M, Hassel T, Bach FW, Hubsch C. Low-temperature degradation of different zirconia ceramics for dental applications. Acta Biomater 2012;8:1213-20.  https://doi.org/10.1016/j.actbio.2011.11.016
  50. Nam MG, Park MG. Changes in the flexural strength of translucent zirconia due to glazing and low-temperature degradation. J Prosthet Dent 2018;120:969.e1-6. https://doi.org/10.1016/j.prosdent.2018.07.017