• Title/Summary/Keyword: Zinc sulfide thin film

Search Result 14, Processing Time 0.031 seconds

Preparation of Zinc Oxide Thin Film by CFR Method and its Electrical Property for Detection of Sulfur Compounds (CFR 법에 의한 산화아연 박막의 제조 및 황 화합물 검출을 위한 전기적 특성)

  • Lee, Sun Yi;Park, No-Kuk;Yoon, Suk Hoon;Lee, Tae Jin
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.218-223
    • /
    • 2010
  • The zinc oxide thin film, which can be applied as the gas sensor of a semiconductor type, was grown on the silicon substrate by CFR(continuous flow reaction) method in this study. The growth property and the electrical property of the zinc oxide thin films synthesized by CFR method were also investigated. Zinc acetate solutions of 0.005~0.02 M were used as the precursor for the preparation of zinc oxide thin films. The size of ZnO particles consisted on the zinc oxide thin film increased not only with increasing concentration of precursor, but also the thickness of thin film increased. The growth rate of zinc oxide thin film by CFR method was proportionably depend on the concentration of precursor and the uniform ZnO thin film was prepared when zinc acetate of 0.01 M is used as the precursor. The charged currents on the zinc oxide thin films were obtained as its electrical property by I-V meter, and increased agree with increasing the thickness of zinc oxide thin film. Thus, it was concluded that the charged current on the zinc oxide thin film can be controlled with changing concentration of precursor solution in CFR method. The charged currents on the zinc oxide thin films also decreased when ZnO thin film is exposed under hydrogen sulfide of 500 ppmv at $300^{\circ}C$ for 5 min. From these results, it could be confirmed that the zinc oxide thin film prepared by CFR method can be used for the detection of sulfur compounds.

Structure and Optical Properties of ZnS:Nd Thin filmsss Produced by RF Sputtering and Rapid Thermal Annealing Process (RF 스퍼터링 및 급속열처리 공정으로 제작한 ZnS:Nd 박막의 구조 및 광학적 특성)

  • Kim, Won-Bae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.233-240
    • /
    • 2021
  • For the production of neodymium-doped zinc sulfide thin films in various amounts, zinc sulfide and neodymium were simultaneously deposited using an RF magnetron sputtering equipment to form a thin films, and rapid thermal annealing was performed at 400℃ for 30 minutes as a post-treatment process. The structure, shape, and optical properties of ZnS thin films having various neodymium doping contents (0.35at.%, 1.31at.%, 1.82at.% and 1.90at.%) were studied. The X-ray diffraction pattern was grown to a (111) cubic structure in all thin films. The surface and structural morphology of the thin films due to the neodymium doping content was explained through SEM and AFM images. Only elements of Zn, S, and Nd that do not contain other impurities were identified through EDAX. The transmittance and band gap of the prepared thin films were confirmed using the UV-vis spectrum.

Properties of the ZnS Thin Film Buffer Layer by Chemical Bath Deposition Process with Different Solution Concentrations and Deposition Time (화학습식공정법을 이용한 용액 농도 및 시간에 따른 ZnS 완충층 특성에 대한 분석)

  • Son, Kyeongtae;Kim, Jongwan;Kim, Minyoung;Shin, Junchul;Jo, Sunghee;Lim, Donggun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.5
    • /
    • pp.269-275
    • /
    • 2014
  • In this study, chemical bath deposition method was used to grow Zinc sulfide(ZnS) thin films from $NH_3/SC(NH_2)_2/ZnSO_4$ solutions at $90^{\circ}C$. ZnS thin films have been prepared onto ITO glass. The concentrations of $ZnSO_4$ and $NH_3$ were varied while the concentration of Thiourea was fixed in 0.52 M. Structural, optical, electrical characteristic of ZnS thin films were measured. The physical and optical properties of different ZnS thin films were influenced severely by the concentration of the two reacting chemicals. The optimal concentration of $ZnSO_4$ and $NH_3$ was 0.085 M and 1.6 M, respectively.

Characteristics of Zns:Mn Thin Film Electroluminescences Prepared by a Repeated Deposition of Hot Wall Method (Hot Wall 법의 반복 증착에 의해 제작한 ZnS:Mn 박막 엘렉트로루미네센스의 특성)

  • 이상태
    • Journal of the Korean Institute of Navigation
    • /
    • v.25 no.4
    • /
    • pp.435-442
    • /
    • 2001
  • A new technique to grow a manganese-doped zinc-sulfide(ZnS:Mn) has been proposed using the repeated deposition of the Hot Wall method. The optical characteristics and crystallinity for the ZnS and ZnS:Mn thin films deposited on a quartz glass substrate by the method were investigated. Also, The ZnS:Mn thin film elcetroluminescent devices were fabricated by the method to study luminescence characteristics. All films showed (111)-oriented cubic structure. By the repeated deposition, the deposition rates were decreased, and the optical characteristics and crystalline properties were improved, which clarifies that the method is effective to deposit the thin films with good crystallinity Futhermore, the crystallinity was more improved by the doping of Mn. Only one peak emission at around 585nm originating from Mn luminescent center is observed In the photoluminescent and electroluminescent spectra of ZnS:Mn films and the luminance of the ZnS:Mn-based thin film electroluminescent devices was obtained below 60cd/$m^2$ . The optical and crystalline properties, luminescence characteristics are discussed in terms of the effects of the repeated deposition and Mn-doping.

  • PDF

Distinct Band Gap Tunability of Zinc Oxysulfide (ZnOS) Thin Films Synthesized from Thioacetate-Capped ZnO Nanocrystals

  • Lee, Don-Sung;Jeong, Hyun-Dam
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.376-386
    • /
    • 2014
  • Zinc oxysulfide nanocrystals (ZnOS NCs) were synthesized by forming ZnS phase on a ZnO matrix. ZnO nanocrystals (NCs) with a diameter of 10 nm were synthesized by forced hydrolysis in an organic solvent. As-synthesized ZnO NCs aggregated with each other due to the high surface energy. As acetic acid (AA) was added into the milky suspension of the aggregated ZnO NCs, transparent solution of well dispersed ZnO NCs formed. Finally ZnOS NCs were formed by adding thioacetic acid (TAA) to the transparent solution. The effect of recrystallization on the structural, optical and electrical properties of the ZnOS NCs were studied. The results of UV-vis absorption confirmed the band gap tunability caused by increasing the curing temperature of ZnOS thin films. This may have originated from the larger effective size due to the recrystallization of zinc sulfide (ZnS). From XRD result we identified that ZnOS thin films have a zinc blende crystal structure of ZnS without wurtzite ZnO structure. This is probably due to the small amount of ZnO phases. These assertions were verified through EDS of FE-SEM, XPS and EDS mapping of HR-TEM results; we clearly proved that ZnOS were comprised of ZnS and ZnO phases.

Growth and characterization of $Cu_2ZnSnSe_4$ (CZTSe) thin films by sputtering of binary selenides and selenization

  • Munir, Rahim;Jung, Gwang-Sun;Ahn, Byung-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.98.2-98.2
    • /
    • 2012
  • Thin film solar cells are growing up in the market due to their high efficiency and low cost. Especially CdTe and $CuInGaSe_2$ based solar cells are leading the other cells, but due to the limited percentage of the elements present in our earth's crust like Tellurium, Indium and Gallium, the price of the solar cells will increase rapidly. Copper Zinc Tin Sulfide (CZTS) and Copper Zinc Tin Selenide (CZTSe) semiconductor (having a kesterite crystal structure) are getting attention for its solar cell application as the absorber layer. CZTS and CZTSe have almost the same crystal structure with more environmentally friendly elements. Various authors have reported growth and characterization of CZTSe films and solar cells with efficiencies about 3.2% to 8.9%. In this study, a novel method to prepare CZTSe has been proposed based on selenization of stacked Copper Selenide ($Cu_2Se$), Tin Selenide ($SnSe_2$) and Zinc Selenide (Zinc Selenide) in six possible stacking combinations. Depositions were carried out through RF magnetron sputtering. Selenization of all the samples was performed in Close Space Sublimation (CSS) in vacuum at different temperatures for three minutes. Characterization of each sample has been performed in Field Emission SEM, XRD, Raman spectroscopy, EDS and Auger. In this study, the properties and results of $Cu_2ZnSnSe_4$ thin films grown by selenization will be presented.

  • PDF

Study on ZnS Thin Films Prepared by RF Magnetron Sputtering

  • Hwang, Dong-Hyeon;An, Jeong-Hun;Son, Yeong-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.399-399
    • /
    • 2011
  • We studied the structural and optical characterization of zinc sulfide (ZnS) thin films by RF magnetron sputtering on glass substrates. The substrate temperature was varied in the range of 100$^{\circ}C$ to 400$^{\circ}C$. The XRD analyses indicated that ZnS films had cubic structures with (111) preferential orientation and grain size varied from 20 to 60 nm, increasing with substrate temperatures. The optical properties were carried out by UV-visible spectrophotometer. Transmission measurement showed that the films had more than 70% transmittance in the wavelength larger than 400 nm, and the absorption edge shifted to shorter wavelength with the increase of substrate temperatures.

  • PDF

Effects of substrate temperature on the performance of $Cu_2ZnSnSe_4$ thin film solar cells fabricated by co-evaporation technique

  • Jung, Sung-Hun;Ahn, Se-Jin;Yun, Jae-Ho;Gwak, Ji-Hye;Cho, A-Ra;Yoon, Kyung-Hoon;Kim, Dong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.400-400
    • /
    • 2009
  • Despite the success of Cu(In,Ga)$Se_2$ (CIGS) based PV technology now emerging in several industrial initiatives, concerns about the cost of In and Ga are often expressed. It is believed that the cost of those elements will eventually limit the cost reduction of this technology. One candidate to replace CIGS is $Cu_2ZnSnSe_4$ (CZTSe), fabricated by co-evaporation technique. Co-evaporation technique will be one of the best methods to control film composition. This type of absorber derives from the $CuInSe^2$ chalcopyrite structure by substituting half of the indium atoms with zinc and other half with tin. Energy bandgap of this material has been reported to range from 0.8eV for selenide to 1.5eV for the sulfide and large coefficient in the order of $10^{14}cm^{-1}$, which means large possibility of commercial production of the most suitable absorber by using the CZTSe film. In this work, Effects of substrate temperature of $Cu_2ZnSnSe_4$ absorber layer on the performance of thin films solar cells were investigated. We reported on some of the absorber properties and device results.

  • PDF

Protective Metal Oxide Coatings on Zinc-sulfide-based Phosphors and their Cathodoluminescence Properties

  • Oh, Sung-Il;Lee, Hyo-Sung;Kim, Kwang-Bok;Kang, Jun-Gill
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3723-3729
    • /
    • 2010
  • We investigated the high-excitation voltage cathodoluminescence (CL) performance of blue light-emitting (ZnS:Ag,Al,Cl) and green light-emitting (ZnS:Cu,Al) phosphors coated with metal oxides ($SiO_2$, $Al_2O_3$, and MgO). Hydrolysis of the metal oxide precursors tetraethoxysilane, aluminum isopropoxide, and magnesium nitrate, with subsequent heat annealing at $400^{\circ}C$, produced $SiO_2$ nanoparticles, an $Al_2O_3$ thin film, and MgO scale-type film, respectively, on the surface of the phosphors. Effects of the phosphor surface coatings on CL intensities and aging behavior of the phosphors were assessed using an accelerating voltage of 12 kV. The MgO thick film coverage exhibited less reduction in initial CL intensity and was most effective in improving aging degradation. Phosphors treated with a low concentration of magnesium nitrate maintained their initial CL intensities without aging degradation for 2000 s. In contrast, the $SiO_2$ and the $Al_2O_3$ coverages were ineffective in improving aging degradation.