• 제목/요약/키워드: Zinc oxide film

검색결과 504건 처리시간 0.026초

산화아연 나노막대가 내장된 아산화구리 박막 구조를 이용한 산화물 광양극 제작 및 광전기화학적 특성 (Fabrication and Photoelectrochemical Properties of an Oxide Photoanode with Zinc Oxide Nanorod Array Embedded in Cuprous Oxide Thin Film)

  • 민병국;김효진
    • 한국재료학회지
    • /
    • 제29권3호
    • /
    • pp.196-203
    • /
    • 2019
  • We report on the fabrication and characterization of an oxide photoanode with a zinc oxide (ZnO) nanorod array embedded in cuprous oxide ($Cu_2O$) thin film, namely a $ZnO/Cu_2O$ oxide p-n heterostructure photoanode, for enhanced efficiency of visible light driven photoelectrochemical (PEC) water splitting. A vertically oriented n-type ZnO nanorod array is first prepared on an indium-tin-oxide-coated glass substrate via a seed-mediated hydrothermal synthesis method and then a p-type $Cu_2O$ thin film is directly electrodeposited onto the vertically oriented ZnO nanorod array to form an oxide p-n heterostructure. The introduction of $Cu_2O$ layer produces a noticeable enhancement in the visible light absorption. From the observed PEC current density versus voltage (J-V) behavior under visible light illumination, the photoconversion efficiency of this $ZnO/Cu_2O$ p-n heterostructure photoanode is found to reach 0.39 %, which is seven times that of a pristine ZnO nanorod photoanode. In particular, a significant PEC performance is observed even at an applied bias of 0 V vs $Hg/Hg_2Cl_2$, which makes the device self-powered. The observed improvement in the PEC performance is attributed to some synergistic effect of the p-n bilayer heterostructure on the formation of a built-in potential including the light absorption and separation processes of photoinduced charge carriers, which provides a new avenue for preparing efficient photoanodes for PEC water splitting.

고분자 기판과 PECVD 절연막에 따른 ITZO 박막 트랜지스터의 특성 분석 (Characteristics of Indium Tin Zinc Oxide Thin Film Transistors with Plastic Substrates)

  • 양대규;김형도;김종헌;김현석
    • 한국재료학회지
    • /
    • 제28권4호
    • /
    • pp.247-253
    • /
    • 2018
  • We examined the characteristics of indium tin zinc oxide (ITZO) thin film transistors (TFTs) on polyimide (PI) substrates for next-generation flexible display application. In this study, the ITZO TFT was fabricated and analyzed with a SiOx/SiNx gate insulator deposited using plasma enhanced chemical vapor deposition (PECVD) below $350^{\circ}C$. X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) results revealed that the oxygen vacancies and impurities such as H, OH and $H_2O$ increased at ITZO/gate insulator interface. Our study suggests that the hydrogen related impurities existing in the PI and gate insulator were diffused into the channel during the fabrication process. We demonstrate that these impurities and oxygen vacancies in the ITZO channel/gate insulator may cause degradation of the electrical characteristics and bias stability. Therefore, in order to realize high performance oxide TFTs for flexible displays, it is necessary to develop a buffer layer (e.g., $Al_2O_3$) that can sufficiently prevent the diffusion of impurities into the channel.

산화인듐아연 박막 트랜지스터에서 질소 첨가가스가 활성층의 물성 및 소자의 특성에 미치는 영향 (Effects of Nitrogen Additive Gas on the Property of Active Layer and the Device Characteristic in Indium-zinc-oxide thin Film Transistors)

  • 이상혁;방정환;김원;엄현석;박진석
    • 전기학회논문지
    • /
    • 제59권11호
    • /
    • pp.2016-2020
    • /
    • 2010
  • Indium-zinc-oxide (IZO) films were deposited at room temperature via RF sputtering with varying the flow rate of additive nitrogen gas ($N_2$). Thin film transistors (TFTs) with an inverted staggered configuration were fabricated by employing the various IZO films, such as $N_2$-added and pure (i.e., w/o $N_2$-added), as active channel layers. For all the deposited IZO films, effects of additive $N_2$ gas on their deposition rates, electrical resistivities, optical transmittances and bandgaps, and chemical structures were extensively investigated. Transfer characteristics of the IZO-based TFTs were measured and characterized in terms of the flow rate of additive $N_2$ gas. The experimental results indicated that the transistor action occurred when the $N_2$-added (with $N_2$ flow rate of 0.4-1.0 sccm) IZO films were used as the active layer, in contrast to the case of using the pure IZO film.

Electrical Properties of Transparent Indium-Tin-Zinc Oxide Semiconductor for Thin-Film Transistors

  • 이기창;최준혁;한언빈;김돈형;이준형;김정주;허영우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.159-159
    • /
    • 2008
  • 투명전도체 (transparent conducting oxides: TCOs) 는 일반적으로 $10^3\Omega^{-1}Cm^{-1}$의 전도도, 가시광 영역에서 80%이상의 투명성을 가지는 재료로서, 액정 박막 표시 장치(TFT-LCD), 광기전성 소자, 유기 발광 소자, 에너지 절약 창문, 태양전지(sollar cell) 등 전극으로 사용되고 있다. 최근에는 TCO의 전도도특성을 조절하여 반도성특성을 가진 투명 산화물 반도체(transparent oxide semiconductor: TOS) 을 이용한 박막 트랜지스터 연구가 활발히 진행 중이다. 기존의 실리콘을 기반으로 하는 박막 트랜지스터의 낮은 이동도, 불투명성의 특성을 가지고 있지만, 산화물 박막트랜지스터는 높은 이동도를 발현 할 수 있을 뿐만 아니라, 넓은 밴드갭 에너지를 갖는 산화물을 이용하므로 투명한 특성도 발현 할 수 있어 차세대 디스플레이의 구동소자로서 응용연구가 되고 있다. 이에 본 연구에서는 박막트랜지스터 channel layer로서의 Indium-Tin-Zinc oxide 적용특성을 조사하였다. Indium, Tin, Zinc 의 혼합비율을 다양하게 조절하여 타겟을 제작하였다. 이를 RF magnetron sputtering 를 이용하여 박막으로 성장시켰으며, 기판으로는 glass 기판을 사용하였다. 박막 성장시 아르곤과 산소의 비율을 다양하게 조절하였다. 성장시킨 박막은 Hall effect, Transmittance, Work function, XRD등을 이용하여 전기적, 광학적, 구조특성을 평가하였다. Indium-Tin-Zinc Oxide(ITZO) 을 channel layer로 사용하여 Thin-film transistor 을 제작하여, TFT의 I-V 및 stability특성을 평가하였다.

  • PDF

대면적 상온 Indium Zinc Oxide 투명 도전막의 물성 특성 비교 (The Comparison to Physical Properties of Large Size Indium Zinc Oxide Transparent Conductive Layer)

  • 정대영;이영준;박준용;이준신
    • 한국표면공학회지
    • /
    • 제41권1호
    • /
    • pp.6-11
    • /
    • 2008
  • An Indium Zinc Oxide(IZO) transparent conductive layer was deposited on a large size glass substrate by using magnetron dc sputtering method with varying a deposition temperature. As the deposition temperature decreased to a room temperature, the sheet resistance of IZO film increased. But this deposition temperature range is included in an applicable to a device. From a standpoint of the sheet resistance, the differences of the sheet resistance were not great and the uniformity of the layer was uniformed around 10%. Crystallization particles were shown on the surface of the layer as deposition temperature increased, but these particles were not shown on the surface of the layer as deposition temperature decreased to the room temperature. It didn't make a scrap of difference in a transmittance of varying deposition temperature. Therefore, it is concluded that IZO thin film manufactured by the room temperature deposition condition can be used as a large size transparent conductive layer of a liquid crystal display device.

Hafnium doping effect in a zinc oxide channel layer for improving the bias stability of oxide thin film transistors

  • Moon, Yeon-Keon;Kim, Woong-Sun;Lee, Sih;Kang, Byung-Woo;Kim, Kyung-Taek;Shin, Se-Young;Park, Jong-Wan
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.252-253
    • /
    • 2011
  • ZnO-based thin film transistors (TFTs) are of great interest for application in next generation flat panel displays. Most research has been based on amorphous indium-gallium-zinc-oxide (IGZO) TFTs, rather than single binary oxides, such as ZnO, due to the reproducibility, uniformity, and surface smoothness of the IGZO active channel layer. However, recently, intrinsic ZnO-TFTs have been investigated, and TFT- arrayss have been demonstrated as prototypes of flat-panel displays and electronic circuits. However, ZnO thin films have some significant problems for application as an active channel layer of TFTs; it was easy to change the electrical properties of the i-ZnO thin films under external conditions. The variable electrical properties lead to unstable TFTs device characteristics under bias stress and/or temperature. In order to obtain higher performance and more stable ZnO-based TFTs, HZO thin film was used as an active channel layer. It was expected that HZO-TFTs would have more stable electrical characteristics under gate bias stress conditions because the binding energy of Hf-O is greater than that of Zn-O. For deposition of HZO thin films, Hf would be substituted with Zn, and then Hf could be suppressed to generate oxygen vacancies. In this study, the fabrication of the oxide-based TFTs with HZO active channel layer was reported with excellent stability. Application of HZO thin films as an active channel layer improved the TFT device performance and bias stability, as compared to i-ZnO TFTs. The excellent negative bias temperature stress (NBTS) stability of the device was analyzed using the HZO and i-ZnO TFTs transfer curves acquired at a high temperature (473 K).

  • PDF

A review of zinc oxide photoanode films for dye-sensitized solar cells based on zinc oxide nanostructures

  • Tyona, M.D.;Osuji, R.U.;Ezema, F.I.
    • Advances in nano research
    • /
    • 제1권1호
    • /
    • pp.43-58
    • /
    • 2013
  • Zinc oxide (ZnO) is a unique semiconductor material that exhibits numerous useful properties for dye-sensitized solar cells (DSSCs) and other applications. Various thin-film growth techniques have been used to produce nanowires, nanorods, nanotubes, nanotips, nanosheets, nanobelts and terapods of ZnO. These unique nanostructures unambiguously demonstrate that ZnO probably has the richest family of nanostructures among all materials, both in structures and in properties. The nanostructures could have novel applications in solar cells, optoelectronics, sensors, transducers and biomedical sciences. This article reviews the various nanostructures of ZnO grown by various techniques and their application in DSSCs. The application of ZnO nanowires, nanorods in DSSCs became outstanding, providing a direct pathway to the anode for photo-generated electrons thereby suppressing carrier recombination. This is a novel characteristic which increases the efficiency of ZnO based dye-sensitized solar cells.

타겟간 거리 변화에 따른 ZnO박막의 c-축 배향성에 관한 연구 (A study on the c-axis Orientation of ZnO Thin Films as a funtion of inter targets distance)

  • 성하윤;금민종;손인환;김경환
    • 한국표면공학회지
    • /
    • 제33권4호
    • /
    • pp.229-232
    • /
    • 2000
  • C-axis oriented zinc oxide thin films were deposited on glass substrate by reactive Facing Targets Sputtering (FTS) system. The characteristics of zinc oxide thin films on power, inter targets distance, and substrate temperature were investigated by XRD(x-ray diffractometer), alphastep (Tencor) analyses. The Facing Targets Sputtering system can deposit thin film in plasma-free situation and change the deposition condition in wide range. The excellently c-axis oriented zinc oxide thin films were obtained at sputter pressure 1mTorr, sputtering current 0.4A, substrate temperature $300^{\circ}C$, inter targets distance 100mm. In the conditions, the rocking curve of zinc oxide thin films deposited on ZnO/Glass was $3.9^{\circ}$.

  • PDF

AZO 투명 전극 기반 반투명 실리콘 박막 태양전지 (AZO Transparent Electrodes for Semi-Transparent Silicon Thin Film Solar Cells)

  • 남지윤;조성진
    • 한국전기전자재료학회논문지
    • /
    • 제30권6호
    • /
    • pp.401-405
    • /
    • 2017
  • Because silicon thin film solar cells have a high absorption coefficient in visible light, they can absorb 90% of the solar spectrum in a $1-{\mu}m$-thick layer. Silicon thin film solar cells also have high transparency and are lightweight. Therefore, they can be used for building integrated photovoltaic (BIPV) systems. However, the contact electrode needs to be replaced for fabricating silicon thin film solar cells in BIPV systems, because most of the silicon thin film solar cells use metal electrodes that have a high reflectivity and low transmittance. In this study, we replace the conventional aluminum top electrode with a transparent aluminum-doped zinc oxide (AZO) electrode, the band level of which matches well with that of the intrinsic layer of the silicon thin film solar cell and has high transmittance. We show that the AZO effectively replaces the top metal electrode and the bottom fluorine-doped tin oxide (FTO) substrate without a noticeable degradation of the photovoltaic characteristics.