Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.3.196

Fabrication and Photoelectrochemical Properties of an Oxide Photoanode with Zinc Oxide Nanorod Array Embedded in Cuprous Oxide Thin Film  

Min, Byeongguk (Graduate School of Advanced Circuit Substrate Engineering, Chungnam National University)
Kim, Hyojin (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.29, no.3, 2019 , pp. 196-203 More about this Journal
Abstract
We report on the fabrication and characterization of an oxide photoanode with a zinc oxide (ZnO) nanorod array embedded in cuprous oxide ($Cu_2O$) thin film, namely a $ZnO/Cu_2O$ oxide p-n heterostructure photoanode, for enhanced efficiency of visible light driven photoelectrochemical (PEC) water splitting. A vertically oriented n-type ZnO nanorod array is first prepared on an indium-tin-oxide-coated glass substrate via a seed-mediated hydrothermal synthesis method and then a p-type $Cu_2O$ thin film is directly electrodeposited onto the vertically oriented ZnO nanorod array to form an oxide p-n heterostructure. The introduction of $Cu_2O$ layer produces a noticeable enhancement in the visible light absorption. From the observed PEC current density versus voltage (J-V) behavior under visible light illumination, the photoconversion efficiency of this $ZnO/Cu_2O$ p-n heterostructure photoanode is found to reach 0.39 %, which is seven times that of a pristine ZnO nanorod photoanode. In particular, a significant PEC performance is observed even at an applied bias of 0 V vs $Hg/Hg_2Cl_2$, which makes the device self-powered. The observed improvement in the PEC performance is attributed to some synergistic effect of the p-n bilayer heterostructure on the formation of a built-in potential including the light absorption and separation processes of photoinduced charge carriers, which provides a new avenue for preparing efficient photoanodes for PEC water splitting.
Keywords
oxide heterostructure; zinc oxide; cuprous oxide; photoanode; photoelectrochemical water splitting;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C.-J. Winter, Int. J. Hydrogen Energy, 34, S1 (2009).   DOI
2 B. C. H. Steele, Nature, 400, 619 (1999).   DOI
3 P. V. Kamat, J. Phys. Chem. C, 111, 2834 (2007).   DOI
4 Y. Wei, L. Ke, J. Kong, H. Liu, Z. Jiao, X. Lu, H. Du and X. W. Sun, Nanotechnology, 23, 235401 (2012).   DOI
5 A. Fujishima and K. Honda, Nature, 238, 37 (1972).   DOI
6 X. Chen and S. S. Mao, Chem. Rev., 107, 2891 (2007).   DOI
7 Z. Kang, X. Yan, Y. Wang, Z. Bai, Y. Liu, Z. Zhang, P. Lin, X. Zhang, H. Yuan, X. Zhang and Y. Zhang, Sci. Rep., 5, 7882 (2015).   DOI
8 P. Lin, X. Chen, X. Yan, Z. Zhang, H. Yuan, P. Li, Y. Zhang and Y. Zhang, Nano Res., 7, 860 (2014).   DOI
9 M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. More and S. Ogale, J. Mater. Chem., 22, 17055 (2012).   DOI
10 T. Jiang, T. Xie, L. Chen, Z. Fu and D. Wang, Nanoscale, 5, 2938 (2013).   DOI
11 S. T. Ren, G. H. Fan, M. L. Liang, Q. Wang and G. L. Zhao, J. Appl. Phys., 115, 064301 (2014).   DOI
12 J. Park, H. Kim and D. Kim, Korean J. Mater. Res., 28, 214 (2018).   DOI
13 Z. Zhang and P. Wang, J. Mater. Chem., 22, 2456 (2012).   DOI
14 Y. Liu, Y. Gu, X. Yan, Z. Kang, S. Lu, Y. Sun and Y. Zhang, Nano Res., 8, 2891 (2015).   DOI
15 S. J. A. Moniz, S. A. Shevin, D. J. Martin, Z.-X. Guo and J. Tang, Energy Environ. Sci., 8, 731 (2015).   DOI
16 D. Wang, X. Zhang, P. Sun, S. Lu, L. Wang, C. Wang and Y. Liu, Electrochimica Acta, 130, 290 (2014).   DOI
17 S. Kim, H. Kim, S.-K. Hong and D. Kim, Korean J. Mater. Res., 26, 604 (2016).   DOI
18 L. Liu, K. Hong, T. Hu and M. Xu, J. Alloys Compd., 511, 195 (2012).   DOI
19 P. E. de Jongh, D. Vanmaekelbergh and J. J. Kelly, Chem. Mater., 11, 3512 (1999).   DOI
20 T. Hisatomi, J. Kubota and K. Domen, Chem. Soc. Rev., 43, 7520 (2014).   DOI
21 D. T. Sawyer, A. Sobkowiak and J. Roberts, Jr., 2nd ed., p. 196, Electrochemistry for Chemists, John Wiley & Sons, New York (1995).