• 제목/요약/키워드: Zero voltage soft switching (ZVS)

검색결과 146건 처리시간 0.023초

단일 스위치를 사용한 LC직렬 공진형 부스트 컨버터 (A LC Series Resonant Boost Converter Using a Single Switch)

  • 박건욱;정두용;지용혁;정용채;한희민;원충연
    • 전력전자학회논문지
    • /
    • 제15권6호
    • /
    • pp.432-440
    • /
    • 2010
  • 본 논문에서는 단일 스위치를 사용한 LC 직렬 공진형 부스트 컨버터를 제안하였다. 제안하는 토폴로지는 별도의 보조 스위치의 추가 없이 일반 부스트 컨버터에 수동소자만을 추가하여 스위치 턴-온, 턴-오프 시 영전압 스위칭(ZVS; Zero Voltage Switching)을 수행한다. 이 토폴로지는 LC직렬 공진에 의해 스위치 오프 타임이 결정되므로, 스위치 온 타임을 가변하여 출력전압을 조절하는 온 타임 가변형 주파수 변조 기법으로 제어된다. 전류 도통 경로에 따라 제안된 회로의 동작 모드를 구분하였고, 제안된 컨버터의 동작모드와 특성은 수학적 해석과 시뮬레이션 및 실험을 통해서 검증하였다.

Design Guidelines for a Capacitive Wireless Power Transfer System with Input/Output Matching Transformers

  • Choi, Sung-Jin
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1656-1663
    • /
    • 2016
  • A capacitive wireless power transfer (C-WPT) system uses an electric field to transmit power through a physical isolation barrier which forms a pair of ac link capacitors between the metal plates. However, the physical dimension and low dielectric constant of the interface medium severely limit the effective link capacitance to a level comparable to the main switch output capacitance of the transmitting circuit, which thus narrows the soft-switching range in the light load condition. Moreover, by fundamental limit analysis, it can be proved that such a low link capacitance increases operating frequency and capacitor voltage stress in the full load condition. In order to handle these problems, this paper investigates optimal design of double matching transformer networks for C-WPT. Using mathematical analysis with fundamental harmonic approximation, a design guideline is presented to avoid unnecessarily high frequency operation, to suppress the voltage stress on the link capacitors, and to achieve wide ZVS range even with low link capacitance. Simulation and hardware implementation are performed on a 5-W prototype system equipped with a 256-pF link capacitance and a 200-pF switch output capacitance. Results show that the proposed scheme ensures zero-voltage-switching from full load to 10% load, and the switching frequency and the link capacitor voltage stress are kept below 250 kHz and 452 V, respectively, in the full load condition.

전압 리플을 이용해 영전류스위칭하는 두개의 트랜스포머를 가지는 위상천이 풀-브릿지 컨버터 (Zero-Current Switching Two-Transformer Phase-Shift Full-Bridge Converter using Voltage Ripple)

  • 윤현기;문건우;윤명중
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.436-438
    • /
    • 2005
  • This paper presents a Zero-Current Switching(ZCS) two-transformer phase-shift full-bridge(TTFB) converter using voltage ripple. The proposed converter provides Zero-Voltage Switching(2VS) of leading leg switches and ZCS of lagging leg switches using volt-age ripple. Especially, circulating current Is reduced by ZCS operation and there are no additional components required for the soft switching of power switches. Furthermore, in case of light load, ZVS operation of lagging leg can be achieved. The operations, analysis and design consideration of proposed converter are presented. To verify the validity of the proposed converter, experimental results for a flow (205V, 2A) prototype are presented.

  • PDF

ZVS를 이용한 LCC형 하프.브릿지 고주파 공진 인버터에 관한 연구 (A Study on the LCC-HB Type Resonant Inverter Using ZVS)

  • 김종해;이영식;서철식;김동희;오승훈;안항목
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 F
    • /
    • pp.1863-1865
    • /
    • 1998
  • A class-D zero voltage switching (called soft-switching) inverter with only one capacitor in parallel with both FET, along with an approximate analysis and experimental results, is introduced. The inverter offers both zero turn-on and zero turn-off switching losses, yielding high efficiency at high frequencies. In addition, soft switching reduces switching noise associated with the high frequency ringing at the swithching instants.

  • PDF

Zero-Current-Switching in Full-Bridge DC-DC Converters Based on Activity Auxiliary Circuit

  • Chu, Enhui;Lu, Ping;Xu, Chang;Bao, Jianqun
    • Journal of Power Electronics
    • /
    • 제19권2호
    • /
    • pp.353-362
    • /
    • 2019
  • To address the problem of circulating current loss in the traditional zero-current switching (ZCS) full-bridge (FB) DC/DC converter, a ZCS FB DC/DC converter topology and modulation strategy is proposed in this paper. The strategy can achieve ZCS turn on and zero-voltage and zero-current switching (ZVZCS) turn off for the primary switches and realize ZVZCS turn on and zero-voltage switching (ZVS) turn off for the auxiliary switches. Moreover, its resonant circuit power is small. Compared with the traditional phase shift full-bridge converter, the new converter decreases circulating current loss and does not increase the current stress of the primary switches and the voltage stress of the rectifier diodes. The diodes turn off naturally when the current decreases to zero. Thus, neither reverse recovery current nor loss on diodes occurs. In this paper, we analyzed the operating principle, steady-state characteristics and soft-switching conditions and range of the converter in detail. A 740 V/1 kW, 100 kHz experimental prototype was established, verifying the effectiveness of the converter through experimental results.

Zero-Voltage and Zero-Current Switching Interleaved Two-Switch Forward Converter

  • Chu, Enhui;Bao, Jianqun;Song, Qi;Zhang, Yang;Xie, Haolin;Chen, Zhifang;Zhou, Yue
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1413-1428
    • /
    • 2019
  • In this paper, a novel zero-voltage and zero-current switching (ZVZCS) interleaved two switch forward converter is proposed. By using a coupled-inductor-type smoothing filter, a snubber capacitor, the parallel capacitance of the leading switches and the transformer parasitic inductance, the proposed converter can realize soft-switching for the main power switches. This converter can effectively reduce the primary circulating current loss by using the coupled inductor and the snubber capacitor. Furthermore, this converter can reduce the reverse recovery loss, parasitic ringing and transient voltage stress in the secondary rectifier diodes caused by the leakage inductors of the transformer and the coupled inductance. The operation principle and steady state characteristics of the converter are analyzed according to the equivalent circuits in different operation modes. The practical effectiveness of the proposed converter was is illustrated by simulation and experimental results via a 500W, 100 kHz prototype using the power MOSFET.

A ZVS Resonant Converter with Balanced Flying Capacitors

  • Lin, Bor-Ren;Chen, Zih-Yong
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1190-1199
    • /
    • 2015
  • This paper presents a new resonant converter to achieve the soft switching of power devices. Two full-bridge converters are connected in series to clamp the voltage stress of power switches at Vin/2. Thus, power MOSFETs with a 500V voltage rating can be used for 800V input voltage applications. Two flying capacitors are connected on the AC side of the two full-bridge converters to automatically balance the two split input capacitor voltages in every switching cycle. Two resonant tanks are used in the proposed converter to share the load current and to reduce the current stress of the passive and active components. If the switching frequency is less than the series resonant frequency of the resonant tanks, the power MOSFETs can be turned on under zero voltage switching, and the rectifier diodes can be turned off under zero current switching. The switching losses on the power MOSFETs are reduced and the reverse recovery loss is improved. Experiments with a 1.5kW prototype are provided to demonstrate the performance of the proposed converter.

위상전이 풀-브리지 DC/DC 컨버터를 이용한 차세대 고속 전철용 Battery Charger에 관한 연구 (A Study on Battery Chargers for the next generation high speed train using the Phase-shift Full-bridge DC/DC Converter)

  • 조한진;이원철;이상석;김태환;원충연
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집 특별세미나,특별/일반세션
    • /
    • pp.623-628
    • /
    • 2009
  • There is an increasing demand for efficient high power/weight auxiliary power supplies for use on high speed traction application. Many new conversion techniques have been proposed to reduce the voltage and current stress of switching components, and the switching losses in the traditional pulse width modulation(PWM) converter. Especially, the phase shift full bridge zero voltage switching PWM techniques are thought most desirable for many applications because this topology permits all switching devices to operate under zero voltage switching(ZVS) by using circuit parasitic components such as leakage inductance of high frequency transformer and power device junction capacitance. The proposed topology is found to have higher efficiency than conventional soft-switching converter. Also it is easily applicable to phase shift full bridge converter by applying an energy recovery snubber consisted of fast recovery diodes and capacitors.

  • PDF

차세대 고속 전철용 Battery Charger 에 관한 연구 (A Study on the Battery Charger for Next Generation High Speed Train)

  • 정한정;이원철;이상석;백진성;원충연
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.321-324
    • /
    • 2008
  • Recently, there is an increasing demand for efficient high power/weight auxiliary power supplies for use on high speed traction application. many new conversion techniques have been proposed to reduce the voltage and current stress of switching components, and the switching losses in the traditional pulse width modulation(PWM) converter. Among them, the phase shift full bridge zero voltage switching PWM techniques are thought most desirable for many applications because this topology permits all switching devices to operate under zero voltage switching(ZVS) by using circuit parasitic components such as leakage inductance of high frequency transformer and power device junction capacitance. The proposed topology is found to have higher efficiency than conventional soft-switching converter. Also it is easily applicable to phase shift full bridge converter by applying an energy recovery snubber consisted of fast recovery diodes and capacitors.

  • PDF

A Secondary Resonance Soft Switching Half Bridge DC-DC Converter with an Inductive Output Filter

  • Chen, Zhang-yong;Chen, Yong
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1391-1401
    • /
    • 2017
  • In this paper, a secondary resonance half-bridge dc-dc converter with an inductive output filter is presented. The primary side of such a converter utilizes asymmetric pulse width modulation (APWM) to achieve zero-voltage switching (ZVS) of the switches, and clamps the voltage of the switch to the input voltage. In addition, zero current switching (ZCS) of the output diode is achieved by a half-wave rectifier circuit with a filter inductor and a resonant branch in the secondary side of the proposed converter. Thus, the switching losses and diode reverse-recovery losses are eliminated, and the performance of the converter can be improved. Furthermore, an inductive output filter exists in the converter reduce the output current ripple. The operational principle, performance analysis and design equation of this converter are given in this paper. The analysis results show that the output diode voltage stress is independent of the duty cycle, and that the voltage gain is almost linear, similar to that of the isolation Buck-type converter. Finally, a 200V~380V input, 24V/2A output experimental prototype is built to verify the theoretical analysis.