A ZVS Resonant Converter with Balanced Flying Capacitors

Bor-Ren Lin^{\dagger} and Zih-Yong Chen ${ }^{*}$
$\upharpoonright^{\dagger},{ }^{*}$ Dept. of Electrical Engineering, National Yunlin University of Science and Technology, Yunlin, Taiwan

Abstract

This paper presents a new resonant converter to achieve the soft switching of power devices. Two full-bridge converters are connected in series to clamp the voltage stress of power switches at $V_{i n} / 2$. Thus, power MOSFETs with a 500 V voltage rating can be used for 800 V input voltage applications. Two flying capacitors are connected on the AC side of the two full-bridge converters to automatically balance the two split input capacitor voltages in every switching cycle. Two resonant tanks are used in the proposed converter to share the load current and to reduce the current stress of the passive and active components. If the switching frequency is less than the series resonant frequency of the resonant tanks, the power MOSFETs can be turned on under zero voltage switching, and the rectifier diodes can be turned off under zero current switching. The switching losses on the power MOSFETs are reduced and the reverse recovery loss is improved. Experiments with a 1.5 kW prototype are provided to demonstrate the performance of the proposed converter.

Key words: Resonant converter, Soft switching, Three-level converter

I. InTRODUCTION

Three-level converters or inverters have been proposed for high voltage applications such as high speed railway electrical systems [1], three-phase high power factor correction converters, ship electric power distribution systems [2], reactive power compensators [3]-[5] and AC motor systems [6]-[8]. Three-level converters/inverters [3]-[8] with a neutral-point diode clamp, a capacitor clamp or series H -bridge topologies have been proposed and developed to decrease the voltage stress of power devices and to increase the switching frequency. As a result, the size of the passive components can be decreased. For modern power converters, a compact size, high power density and high circuit efficiency are normally required. Thus, three-level converters [9]-[14] with zero voltage switching (ZVS) have been proposed to reduce the switching losses on power devices at a desired load range. Based on the resonant behavior due to the leakage inductance and resonant capacitance, the power switches can be turned on under ZVS

[^0]during the transition interval. However, the ZVS range of power switches depends on the load power and input voltage conditions. Thus, it is very difficult to design a ZVS three-level converter with a wide range of load conditions. Recently, resonant converters [14]-[16] have received a lot of attention due to their essential advantages in terms of a high conversion efficiency and a wide ZVS range of the load condition. If the switching frequency is less than the series resonant frequency, the rectifier diodes at the secondary side are operated under zero current switching (ZCS) and the power switches are operated under ZVS turn-on. Thus, the reverse recovery losses of the diode rectifier are improved and the switching losses of the power switches are reduced. However, the voltage stress of the power switches in a conventional resonant converter is equal to the input voltage. In conventional three-level resonant converters [17], [18], the input split voltages cannot be balanced automatically in every switching cycle.

This paper presents a new resonant converter with the functions of a low voltage stress of the power switches, low switching losses and balanced input capacitor voltages in every switching cycle. Two full-bridge resonant converters are connected in series at the high voltage side to limit the voltage stress of the power switch at $V_{i n} / 2$. The secondary sides of the two full-bridge converters are connected in
parallel to share the load current and to reduce the size of the active and passive components. In order to balance the two input capacitor voltages, two flying capacitors are connected between the AC sides of the two full-bridge converter legs. Thus, the input capacitor voltages can be automatically balanced in each switching cycle. Pulse frequency modulation is adopted to regulate the output voltage. The input impedance of the resonant converter is controlled as an inductive load at the switching frequency. Thus, the power switches can be turned on under ZVS with a wide range of load conditions. If the switching frequency is lower than the series resonant frequency, the rectifier diodes can be turned off under ZCS. The system analysis, circuit characteristics and a design example of the prototype circuit are discussed in detail. Finally, experiments are provided to demonstrate the performance of the proposed converter.

II. Proposed Converter

Fig. 1(a) shows a block diagram of a general two-stage $\mathrm{AC} / \mathrm{DC}$ converter. The front stage is a three-phase power factor corrector (PFC) to achieve a high power factor and to obtain a stable DC bus voltage $V_{i n}$. The second stage is a DC/DC converter to provide a stable output voltage against load current variations. Fig. 1(b) shows a circuit diagram of a conventional three-phase bidirectional PFC. In this circuit, energy can be transferred from an AC source to a DC load or from a DC load to an AC source. The output DC voltage $V_{i n}$ of a three-phase PFC is normally regulated at $750 \mathrm{~V}-800 \mathrm{~V}$. Fig. 1(c) presents a circuit diagram of the proposed new DC/DC converter. Two full-bridge resonant converters are connected in series at the high voltage side to reduce the voltage stress of the power switches and to achieve high circuit efficiency due to ZVS turn-on for each power switch. The secondary sides of these two converters are connected in parallel in order to reduce the current stress of the passive and active components. In order to automatically balance the two input split capacitor voltages $v_{\text {Cin } 1}$ and $v_{\text {Cin2 }}$, two flying capacitors $C_{f 1}$ and $C_{f 2}$ are connected at the AC terminal points (a, c) and (b, d). Thus, the two split capacitor voltages and the two flying voltages are automatically balanced, $v_{C i n 1}=v_{C i n 2}=v_{C f 1}=v_{C f 2}=V_{i n} / 2$, in a switching cycle. $C_{i n 1}$ and $C_{i n 2}$ are input split capacitances. $S_{1}-S_{8}$ are power MOSFETs. $L_{r 1}$ and $L_{r 2}$ are resonant inductances. $C_{r 1}$ and $C_{r 2}$ are resonant capacitances. $C_{1}-C_{8}$ are the output capacitances of $S_{1}-S_{8}$, respectively. $D_{1}-D_{4}$ are the rectifier diodes at the output side. $L_{m 1}$ and $L_{m 2}$ are the magnetizing inductances of the transformers T_{l} and T_{2}, respectively. C_{o} is output capacitance. The first resonant converter includes $C_{i n}, S_{1}-S_{4}, C_{1}-C_{4}, C_{r 1}, L_{r 1}$, T_{1}, D_{1}, D_{2} and C_{o}. The components of the second resonant converter are $C_{i n 2}, S_{5}-S_{8}, C_{5}-C_{8}, C_{r 2}, L_{r 2}, T_{2}, D_{3}, D_{4}$ and C_{o}. $C_{f 1}$ and $C_{f 2}$ are used to balance $v_{C i n 1}$ and $v_{C i n 2}$ in every switching cycle. The voltage stress of each power switch is clamped at

Fig. 1. Circuit diagram. (a) Two-stage AC/DC converter. (b) Front stage with a general three-phase PFC. (c) Proposed ZVS DC/DC converter with two full-bridge resonant circuits and two flying capacitors.
$V_{\text {in }} / 2$. Therefore, MOSFETs with 500 V or 600 V of voltage stress can be used at the 800 V input voltage condition. The pulse frequency modulation scheme is adopted to regulate the output voltage. If the switching frequency is less than the series resonant frequency at the full load and maximum input voltage case, the power switches $S_{1}-S_{8}$ are turned on at ZVS and the rectifier diodes $D_{1}-D_{4}$ are turned off at ZCS. Thus, the switching losses of the power switches are reduced and the reverse recovery losses of the rectifier diodes are improved.

III. Operation Principles

In this section, the system analysis and operation principle of the proposed converter are discussed assuming the following assumptions. 1) The transformers T_{1} and T_{2} have the same magnetizing inductances $L_{m 1}=L_{m 2}=L_{m}$ and turns ratios $\left.n=n_{p} / n_{s 1}=n_{p} / n_{s 2}, 2\right) S_{1}-S_{8}$ are ideal and have the same output capacitances $C_{1}=\ldots=C_{8}=C_{o s s}, 3$) the diodes $D_{1}-D_{4}$ are ideal, 4) the resonant inductances $\left.L_{r 1}=L_{r 2}=L_{r}, 5\right)$ the resonant capacitances $\left.C_{r 1}=C_{r 2}=C_{r}, 6\right) C_{o}$ is large enough that V_{o} is a constant voltage, 7) $V_{C i n 1}=V_{C i n 2}=V_{C f 1}=V_{C / 2}=V_{i n} / 2$, and 8)
$C_{i n 1}=C_{i n 2}$ and $C_{f 1}=C_{f 2}$. Pulse frequency modulation is adopted to change the input impedance of the proposed converter so that the output voltage is regulated at a desired voltage value against different input voltage and load conditions. Based on the on/off states of $S_{1}-S_{8}$ and $D_{1}-D_{4}$, six operating modes can be derived in a switching period. Fig. 2 shows the key PWM waveforms of the proposed converter. The duty cycle of $S_{1}-S_{8}$ is $0.5 . S_{1}, S_{4}, S_{5}$ and S_{8} have the same PWM waveforms. In the same manner, S_{2}, S_{3}, S_{6} and S_{7} have the same PWM waveforms. However, the PWM waveforms of S_{1} and S_{2} are complementary each other. The equivalent circuits of each operation mode are shown in Fig. 3. Before time $t_{0}, S_{1}-S_{8}, D_{2}$ and D_{4} are all in the off-state. The capacitors C_{1}, C_{4}, C_{5} and C_{8} are discharged, and C_{2}, C_{3}, C_{6} and C_{7} are charged.
Mode 1 [$\left.t_{0}-\boldsymbol{t}_{1}\right]$: At $t_{0}, C_{1}, C_{4}, C_{5}$ and C_{8} are discharged to zero voltage. Since $i_{L r 1}$ and $i_{L r 2}$ are both negative, the anti-parallel diodes of S_{1}, S_{4}, S_{5} and S_{8} are conducting. Therefore, S_{1}, S_{4}, S_{5} and S_{8} can be turned on at this moment to achieve ZVS. The flying capacitor voltages $v_{C f 1}=V_{\text {Cin } 1}$ and $v_{C f 2}=v_{\text {Cin } 2}$. The voltage stresses of S_{2} and S_{3} are equal to $V_{C i n 1}$, and the voltage stresses of S_{6} and S_{7} are equal to $V_{C i n 2}$. In resonant circuit $1, i_{L r 1}>i_{L m 1}$ and the diode D_{1} conducts. Thus, $v_{L m 1}=n V_{o}$ and $i_{L m 1}$ is increasing in this mode. $C_{r 1}$ and $L_{r 1}$ are resonant with the initial voltage $V_{i n} / 2-n V_{o}-v_{C r 1}\left(t_{0}\right)$. Similarly, $C_{r 2}$ and $L_{r 2}$ are resonant with the initial voltage $V_{i n} / 2-n V_{o}-v_{C r 2}\left(t_{0}\right)$ in the second resonant circuit, and $i_{L m 2}$ is also increasing. The input power is transferred to the output load through ($S_{1}, L_{r 1}, T_{1}, S_{4}, D_{1}$) in resonant circuit 1 and (S_{5}, $L_{r 2}, T_{2}, S_{8}, D_{3}$) resonant circuit 2 . Thus, the resonant inductor currents and the capacitor voltages in this mode are expressed as:

$$
\begin{align*}
i_{L r 1}(t)= & \frac{V_{i n} / 2-n V_{o}-v_{C r 1}\left(t_{0}\right)}{Z_{r 1}} \sin \omega_{r 1}\left(t-t_{0}\right) \tag{1}\\
& +i_{L r 1}\left(t_{0}\right) \cos \omega_{r 1}\left(t-t_{0}\right) \\
i_{L r 2}(t)= & \frac{V_{i n} / 2-n V_{o}-v_{C r 2}\left(t_{0}\right)}{Z_{r 1}} \sin \omega_{r 1}\left(t-t_{0}\right) \tag{2}\\
& +i_{L r 2}\left(t_{0}\right) \cos \omega_{r 1}\left(t-t_{0}\right) \\
v_{C r 1}(t)= & V_{i n} / 2-n V_{o}-\left[V_{\text {in }} / 2-n V_{o}-v_{C r 1}\left(t_{0}\right)\right] \times \tag{3}\\
& \cos \omega_{r 1}\left(t-t_{0}\right)+i_{L r 1}\left(t_{0}\right) Z_{r 1} \sin \omega_{r 1}\left(t-t_{0}\right) \\
v_{C r 2}(t)= & V_{i n} / 2-n V_{o}-\left[V_{i n} / 2-n V_{o}-v_{C r 2}\left(t_{0}\right)\right] \times \tag{4}\\
& \cos \omega_{r 1}\left(t-t_{0}\right)+i_{L r 2}\left(t_{0}\right) Z_{r 1} \sin \omega_{r 1}\left(t-t_{0}\right)
\end{align*}
$$

where $Z_{r 1}=\sqrt{L_{r} / C_{r}}$ and $\omega_{r 1}=1 / \sqrt{L_{r} C_{r}}$.
Mode $2\left[\boldsymbol{t}_{1}-\boldsymbol{t}_{\mathbf{2}}\right]$: At $t_{1}, i_{L r 1}=i_{L m 1}$ and $i_{L r 2}=i_{L m 2}$. Then, the diodes $D_{1}-D_{4}$ are off in this mode. Since S_{1} and S_{4} are still conducting, $C_{r 1}, L_{r 1}$ and $L_{m 1}$ are resonant in resonant circuit 1. In the same manner, S_{5} and S_{8} are still conducting so that $C_{r 2}$, $L_{r 2}$ and $L_{m 2}$ are resonant in resonant circuit 2. Thus, $i_{L r 1}, i_{L r 2}$, $v_{C r 1}$ and $v_{C r 2}$ are expressed as:

Fig. 2. Key waveforms of the proposed converter.

$$
\begin{align*}
i_{L r 1}(t)= & \frac{V_{i n} / 2-v_{C r 1}\left(t_{1}\right)}{Z_{r 2}} \sin \omega_{r 2}\left(t-t_{1}\right) \tag{5}\\
& +i_{L r 1}\left(t_{1}\right) \cos \omega_{r 2}\left(t-t_{1}\right) \\
i_{L r 2}(t)= & \frac{V_{i n} / 2-v_{C r 2}\left(t_{1}\right)}{Z_{r 2}} \sin \omega_{r 2}\left(t-t_{1}\right) \tag{6}\\
& +i_{L r 2}\left(t_{1}\right) \cos \omega_{r 2}\left(t-t_{1}\right) \\
v_{C r 1}(t)= & V_{i n} / 2-\left[V_{i n} / 2-v_{C r 1}\left(t_{1}\right)\right] \cos \omega_{r 2}\left(t-t_{1}\right) \tag{7}\\
& +i_{L r 1}\left(t_{1}\right) Z_{r 2} \sin \omega_{r 2}\left(t-t_{1}\right) \\
v_{C r 2}(t)= & V_{i n} / 2-\left[V_{i n} / 2-v_{C r 2}\left(t_{1}\right)\right] \cos \omega_{r 2}\left(t-t_{1}\right) \tag{8}\\
& +i_{L r 2}\left(t_{1}\right) Z_{r 2} \sin \omega_{r 2}\left(t-t_{1}\right)
\end{align*}
$$

where $Z_{r 2}=\sqrt{\left(L_{r}+L_{m}\right) / C_{r}}$ and $\omega_{r 2}=\frac{1}{\sqrt{\left(L_{r}+L_{m}\right) C_{r}}}$.
Mode 3 [$\boldsymbol{t}_{\mathbf{2}}-\boldsymbol{t}_{3}$]: At $t_{2}, S_{1}, S_{4}, S_{5}$ and S_{8} are turned off and the diodes D_{2} and D_{4} are conducting. Thus, $v_{L m 1}=v_{L m 2}=-n V_{o}$. The magnetizing currents $i_{L m 1}$ and $i_{L m 2}$ decrease with a slope of $-n V_{o} / L_{m}$. Since $i_{L r 1}\left(t_{2}\right)>0$ and $i_{L r 2}\left(t_{2}\right)>0, C_{1}, C_{4}, C_{5}$ and C_{8} are charged and C_{2}, C_{3}, C_{6} and C_{7} are discharged.

$$
\begin{align*}
& v_{C 1}(t)=v_{C 4}(t) \approx \frac{i_{L r 1}\left(t_{2}\right)}{2 C_{o s s}}\left(t-t_{2}\right) \tag{9}\\
& v_{C 2}(t)=v_{C 3}(t) \approx \frac{V_{\text {in }}}{2}-\frac{i_{L r 1}\left(t_{2}\right)}{2 C_{o s s}}\left(t-t_{2}\right) \tag{10}\\
& v_{C 5}(t)=v_{C 8}(t) \approx \frac{i_{L r 2}\left(t_{2}\right)}{2 C_{\text {oss }}}\left(t-t_{2}\right) \tag{11}\\
& v_{C 6}(t)=v_{C 7}(t) \approx \frac{V_{\text {in }}}{2}-\frac{i_{L r 2}\left(t_{2}\right)}{2 C_{o s s}}\left(t-t_{2}\right) \tag{12}
\end{align*}
$$

If the energy stored in $L_{r 1}$ and $L_{r 2}$ at t_{2} is greater than the energy stored in $C_{1}-C_{8}$, then C_{2}, C_{3}, C_{6} and C_{7} can be discharged to zero voltage at time t_{3}.
Mode $4\left[\mathbf{t}_{3}-\mathbf{t}_{4}\right]$: At $t_{3}, C_{2}, C_{3}, C_{6}$ and C_{7} are discharged to zero voltage and the anti-parallel diodes of S_{2}, S_{3}, S_{6} and S_{7} are conducting. Before $i_{L r 1}$ and $i_{L r 2}$ become negative, S_{2}, S_{3}, S_{6} and S_{7} can be turned on at this moment under ZVS. Since

(a)

(c)

(e)

(b)

(d)

(f)

Fig. 3. Operation modes of the proposed converter in one switching cycle. (a) Mode 1. (b) Mode 2. (c) Mode 3. (d) Mode 4. (e) Mode 5. (f) Mode 6.
D_{2} and D_{4} are conducting, $v_{L m 1}=v_{L m 2}=-n V_{o}$. Thus, $i_{L m 1}$ and $i_{L m 2}$ decrease in this mode. The voltage stresses of S_{1} and S_{4} are equal to $V_{\text {Cin1 }}$, and the voltage stresses of S_{5} and S_{8} are equal to $V_{\text {Cin2 } 2}$. The flying capacitor voltages $v_{C f 1}=V_{\text {Cin } 2}$ and $v_{C f 2}=v_{C i n 1}$. In circuit module $1, C_{r 1}$ and $L_{r 1}$ are resonant with the initial voltage $n V_{o}-V_{i n} / 2-v_{C r 1}\left(t_{3}\right)$. Similarly, $C_{r 2}$ and $L_{r 2}$ are resonant with the initial voltage $n V_{o}-V_{i n} / 2-v_{C r 2}\left(t_{3}\right)$ in the second resonant circuit.

$$
\begin{align*}
i_{L r 1}(t)= & \frac{n V_{o}-V_{i n} / 2-v_{C r 1}\left(t_{3}\right)}{Z_{r 1}} \sin \omega_{r 1}\left(t-t_{3}\right) \tag{13}\\
& +i_{L r 1}\left(t_{3}\right) \cos \omega_{r 1}\left(t-t_{3}\right) \\
i_{L r 2}(t)= & \frac{n V_{o}-V_{i n} / 2-v_{C r 2}\left(t_{3}\right)}{Z_{r 1}} \sin \omega_{r 1}\left(t-t_{3}\right) \tag{14}\\
& +i_{L r 2}\left(t_{3}\right) \cos \omega_{r 1}\left(t-t_{3}\right) \\
v_{C r 1}(t)= & n V_{o}-V_{i n} / 2-\left[n V_{o}-V_{i n} / 2-v_{C r 1}\left(t_{3}\right)\right] \times \\
& \cos \omega_{r 1}\left(t-t_{3}\right)+i_{L r 1}\left(t_{3}\right) Z_{r 1} \sin \omega_{r 1}\left(t-t_{3}\right) \tag{15}\\
v_{C r 2}(t)= & n V_{o}-V_{i n} / 2-\left[n V_{o}-V_{i n} / 2-v_{C r 2}\left(t_{3}\right)\right] \times \tag{16}\\
& \cos \omega_{r 1}\left(t-t_{3}\right)+i_{L r 2}\left(t_{3}\right) Z_{r 1} \sin \omega_{r 1}\left(t-t_{3}\right)
\end{align*}
$$

The input power is transferred to the output load through S_{3}, $L_{r 1}, T_{1}, S_{2}$ and D_{2} in resonant circuit 1 and through $S_{7}, L_{r 2}, T_{2}$, S_{6} and D_{4} in resonant circuit 2.
Mode 5 [$\left.\boldsymbol{t}_{4}-\boldsymbol{t}_{5}\right]$: At $t_{4}, i_{L r 1}=i_{L m 1}$ and $i_{L r 2}=i_{L m 2}$. Thus, the diodes $D_{1}-D_{4}$ are off. Since S_{2}, S_{3}, S_{6} and S_{7} are still in the on-state, $C_{r 1}, L_{r 1}$ and $L_{m 1}$ are resonant in circuit 1 , and $C_{r 2}, L_{r 2}$ and $L_{m 2}$ are resonant in circuit 2.

$$
\begin{align*}
i_{L r 1}(t)= & \frac{-V_{i n} / 2-v_{C r 1}\left(t_{4}\right)}{Z_{r 2}} \sin \omega_{r 2}\left(t-t_{4}\right) \tag{17}\\
& +i_{L r 1}\left(t_{4}\right) \cos \omega_{r 2}\left(t-t_{4}\right) \\
i_{L r 2}(t)= & \frac{-V_{i n} / 2-v_{C r 2}\left(t_{4}\right)}{Z_{r 2}} \sin \omega_{r 2}\left(t-t_{4}\right) \tag{18}\\
& +i_{L r 2}\left(t_{4}\right) \cos \omega_{r 2}\left(t-t_{4}\right) \\
v_{C r 1}(t)= & -V_{i n} / 2+\left[V_{i n} / 2+v_{C r 1}\left(t_{4}\right)\right] \cos \omega_{r 2}\left(t-t_{4}\right) \tag{19}\\
& +i_{L r 1}\left(t_{4}\right) Z_{r 2} \sin \omega_{r 2}\left(t-t_{4}\right) \\
v_{C r 2}(t)= & -V_{i n} / 2+\left[V_{i n} / 2+v_{C r 2}\left(t_{4}\right)\right] \cos \omega_{r 2}\left(t-t_{4}\right) \tag{20}\\
& +i_{L r 2}\left(t_{4}\right) Z_{r 2} \sin \omega_{r 2}\left(t-t_{4}\right)
\end{align*}
$$

The flying capacitor voltages $v_{C f 1}=V_{C i n 2}$ and $v_{C f 2}=v_{C i n 1}$ in this mode.
Mode $6\left[\boldsymbol{t}_{5}-\boldsymbol{T}_{s}+\boldsymbol{t}_{0}\right]$: At $t_{5}, S_{2}, S_{3}, S_{6}$ and S_{7} are turned off and the diodes D_{1} and D_{3} are conducting. The magnetizing voltages $v_{L m 1}=v_{L m 2}=n V_{o}$. Thus, $i_{L m 1}$ and $i_{L m 2}$ increase in this mode. Since $i_{L r 1}$ and $i_{L r 2}$ are negative, C_{1}, C_{4}, C_{5} and C_{8} are discharged and C_{2}, C_{3}, C_{6} and C_{7} are charged.

$$
\begin{align*}
& v_{C 1}(t)=v_{C 4}(t) \approx \frac{V_{\text {in }}}{2}+\frac{i_{L r 1}\left(t_{5}\right)}{2 C_{o s s}}\left(t-t_{5}\right) \tag{21}\\
& v_{C 2}(t)=v_{C 3}(t) \approx \frac{-i_{\text {Lr1 }}\left(t_{5}\right)}{2 C_{\text {oss }}}\left(t-t_{5}\right) \tag{22}
\end{align*}
$$

Fig. 4. Equivalent circuit of the proposed converter for the derivation of steady state model.

$$
\begin{align*}
& v_{C 5}(t)=v_{C 8}(t) \approx \frac{V_{\text {in }}}{2}+\frac{i_{L r 2}\left(t_{5}\right)}{2 C_{o s s}}\left(t-t_{5}\right) \tag{23}\\
& v_{C 6}(t)=v_{C 7}(t) \approx \frac{-i_{L r 2}\left(t_{5}\right)}{2 C_{o s s}}\left(t-t_{5}\right) \tag{24}
\end{align*}
$$

If the energy stored in $L_{r 1}$ and $L_{r 2}$ at t_{5} is greater than the energy stored in $C_{1}-C_{8}$, then C_{1}, C_{4}, C_{5} and C_{8} can be discharged to zero voltage at time $T_{s}+t_{0}$. Then, the operating modes of the proposed converter in a switching cycle are complete.

IV. CONVERTER PERFORMANCE ANALYSIS

The output voltage of the proposed converter is based on pulse frequency modulation. Thus, the fundamental harmonic approach with a variable switching frequency is used to approximately analyze the steady state of the proposed converter. The power transfer from the input terminal to the output load through two full-bridge resonant tanks is depended on the switching frequency. All of the harmonics of the switching frequency are neglected in the following discussion. Fig. 4 shows an equivalent circuit of the proposed converter for the derivation of the steady state model. The equivalent circuit components in the two resonant tanks are identical. Each resonant tank is supplied one-half of the input power to the output load. Since the duty ratio of each power switch is equal to 0.5 , the input AC voltages $v_{a b}$ and $v_{c d}$ of the resonant tanks are square waveforms with two voltage levels $V_{i n} / 2$ and $-V_{i n} / 2$. The AC voltages $v_{a b}$ and $v_{c d}$ can be expressed as the fundamental frequency term and the harmonics term.

$$
\begin{equation*}
v_{a c}(t)=v_{c d}(t)=\frac{2 V_{i n}}{\pi} \sin \omega_{s} t+\sum_{n=2}^{\infty} \frac{2 V_{i n}}{n \pi} \sin n \omega_{s} t \tag{25}
\end{equation*}
$$

From (25), the fundamental root-mean-square (rms) value of $v_{a b}$ and $v_{c d}$ is equal to $\sqrt{2} V_{i n} / \pi$. Due to the on-off states of
$D_{1}-D_{4}$, the fundamental rms value of the magnetizing voltages is expressed as $v_{L m 1, r m s}=v_{L m 2, r m s}=2 \sqrt{2} n V_{o} / \pi$. Since the average output current of each center-tapped rectifier is equal to $I_{o} / 2$, the $r m s$ value of the secondary winding currents is equal to $i_{T 1, s, r m s}=i_{T 2, s, r m s}=\pi I_{o} / 4 \sqrt{2}$. Therefore, the load resistance R_{o} reflected to the transformer primary side can be expressed as:

$$
\begin{equation*}
R_{a c, 1}=R_{a c, 2}=R_{a c}=\frac{v_{L m 1, r m s}}{i_{T 1, r m s, s} / n}=\frac{16 n^{2}}{\pi^{2}} R_{o} \tag{26}
\end{equation*}
$$

The resonant tank is excited by an effectively fundamental sinusoidal input voltage v_{f} and it drives the effective AC resistive load $R_{a c}$. The pulse frequency modulation (PFM) scheme is adopted to regulate the AC voltage gain of the proposed converter. The AC voltage gain of the resonant tank can be expressed as:

$$
\begin{equation*}
\left|G_{a c}\left(f_{s}\right)\right|=1 / \sqrt{\left[1+k\left(1-\frac{f_{r}^{2}}{f_{s}^{2}}\right)\right]^{2}+Q^{2}\left(\frac{f_{s}}{f_{r}}-\frac{f_{r}}{f_{s}}\right)^{2}} \tag{27}
\end{equation*}
$$

where $f_{r}=1 /\left(2 \pi \sqrt{L_{r} C_{r}}\right), \quad Q=\sqrt{L_{r} / C_{r}} / R_{a c}, \quad k=L_{r} / L_{m}$, $C_{r 1}=C_{r 2}=C_{r}, L_{r 1}=L_{r 2}=L_{r}$ and f_{s} is the switching frequency. The DC voltage gain $G_{d c}$ of the proposed converter is given as:

$$
\begin{equation*}
G_{d c}=\frac{2 n\left(V_{o}+V_{f}\right)}{V_{i n}} \tag{28}
\end{equation*}
$$

where V_{f} is the voltage drop on the rectifier diodes $D_{1}-D_{4}$. If the input and output DC voltages are given, the operating switching frequency can be obtained by $G_{d c}=G_{a c}$.
A laboratory prototype is implemented with the following specifications: $V_{i n}=750 \mathrm{~V}-800 \mathrm{~V}, V_{o}=48 \mathrm{~V}, P_{o}=1500 \mathrm{~W}$ and the series resonant frequency $f_{r}=120 \mathrm{kHz}$. The primary and secondary winding turns of the transformers T_{1} and T_{2} are 34 turns and 4 turns, respectively. Thus, the minimum and maximum DC voltage gains of the resonant converter are expressed as:

$$
\begin{align*}
& G_{d c, \min }=\frac{2 n\left(V_{o}+V_{f}\right)}{V_{i n, \max }}=\frac{2 \times(34 / 4) \times(48+1.1)}{800} \approx 1.04(2 \tag{29}\\
& G_{d c, \max }=\frac{2 n\left(V_{o}+V_{f}\right)}{V_{i n, \min }}=\frac{2 \times(34 / 4) \times(48+1.1)}{750}=1.11(3 \tag{30}
\end{align*}
$$

The AC equivalent resistance $R_{a c}$ at the full load condition is given as:

$$
\begin{equation*}
R_{a c}=\frac{16 n^{2} R_{o}}{\pi^{2}} \approx 180 \Omega \tag{31}
\end{equation*}
$$

In the prototype circuit, the selected inductance ratio of L_{r} and L_{m} is $k=L_{r} / L_{m}=0.2$. Based on (27), (29) and (30), the AC voltage gain curves of the proposed converter with different quality factors Q and frequency ratios F at $k=0.2$ are illustrated in Fig. 5. From Fig. 5, it is observed that the output voltage can be regulated if the quality factor $\mathrm{Q} \leq 0.5$ at a full load. Therefore, $Q=0.5$ at a full load is selected in the prototype circuit. The AC voltage gain of the proposed converter at the no load condition $(Q=0)$ is given as:

Fig. 5. Gain curves of proposed resonant converter with $V_{i n, m i n}=750 \mathrm{~V}$ and $V_{i n, \max }=800 \mathrm{~V}$.

$$
\begin{equation*}
\left|G_{a c}\left(f_{s}\right)\right|_{Q=0, f_{s}=\infty} \approx 1 /(1+k)=0.83<G_{d c, \text { min }} \tag{32}
\end{equation*}
$$

Therefore, the output voltage V_{o} can be regulated at the no load condition. Based on the derived $R_{a c}, k, Q$ and f_{r}, the resonant inductances, the magnetizing inductances and the resonant capacitances can be obtained.

$$
\begin{gather*}
L_{r}=L_{r 1}=L_{r 2}=\frac{Q R_{a c}}{2 \pi f_{r}}=\frac{0.5 \times 180}{2 \pi \times 120 \times 10^{3}} \approx 110 \mu \mathrm{H} \tag{33}\\
L_{m 1}=L_{m 2}=L_{r} / k=\frac{110 \mu H}{1 / 5}=550 \mu \mathrm{H} \tag{34}\\
C_{r 1}=C_{r 2}=\frac{1}{4 \pi^{2} L_{r} f_{r}^{2}} \approx 16 \mathrm{nF} \tag{35}
\end{gather*}
$$

The voltage stress of $S_{1}-S_{8}$ is equal to $V_{i n, m a x} / 2=400 \mathrm{~V}$. MOSFETs (IRFP460) with $500 \mathrm{~V} / 20 \mathrm{~A}$ ratings are selected for $S_{1}-S_{8}$. The voltage stress and average current of $D_{1}-D_{6}$ are equal to $2\left(V_{o}+V_{f}\right)=98.2 \mathrm{~V}$ and $I_{o, \text { max }} / 4 \approx 7.8 \mathrm{~A}$, respectively. Diodes (KCU30A30) with $300 \mathrm{~V} / 30 \mathrm{~A}$ ratings and a 1.1 V voltage drop are adopted for $D_{1}-D_{4}$. The adopted capacitances $C_{\text {in } 1}=C_{\text {in } 2}=470 \mu \mathrm{~F} / 450 \mathrm{~V}, \quad C_{f 1}=C_{f 2}=100 \mathrm{nF} / 630 \mathrm{~V}$ and $C_{o}=2200 \mu \mathrm{~F} / 100 \mathrm{~V}$.

V. EXPERIMENTAL RESULTS

Experiments with a prototype circuit, with the circuit components derived in the previous section, are provided to demonstrate the performance of the proposed converter. Fig. 6 shows the measured gate voltages of $S_{1}-S_{8}$ at a full load with the input voltage $V_{i n}=750 \mathrm{~V}$ and 800 V conditions. Fig. 7 illustrates the measured gate voltage, drain voltage and switch current of S_{1} at light (25%) and full (100%) loads with different input voltages. Before S_{1} is turned on, $i_{S 1}$ is negative to discharge the drain-to-source capacitor of S_{1}. Therefore, S_{1} can be turned on under ZVS when the drain voltage $v_{S 1, d s}$ is decreased to zero voltage. Since S_{4}, S_{5} and S_{8} have the same PWM waveforms as S_{1}, it is clear that S_{4}, S_{5} and S_{8} are also turned on under ZVS from a 25% load to a full load. Fig. 8 shows the measured gate voltage, drain voltage and switch current of S_{2} at light (25%) and full $(100 \%$) loads with

Fig. 6. Measured gate voltages of $S_{1}-S_{8}$ at full load and (a) $V_{i n}=750 \mathrm{~V}$ (b) $V_{i n}=800 \mathrm{~V}$.

Fig. 7. Measured gate voltage, drain voltage and switch current of S_{1} at (a) 25% load and $V_{i n}=750 \mathrm{~V}$ (b) 25% load and $V_{\text {in }}=800 \mathrm{~V}$ (c) 100% load and $V_{i n}=750 \mathrm{~V}$ (d) 100% load and $V_{i n}=800 \mathrm{~V}$.
different input voltages. S_{2} is also turned on under ZVS from a 25% load to a full load. Since the PWM signals of S_{3}, S_{6} and S_{7} are identical to the PWM signal of S_{2}, it can be determined that S_{3}, S_{6} and S_{7} are also turned on under ZVS. Fig. 9 gives the measured results of the gate voltages, AC terminal voltages, resonant inductor currents and resonant capacitor voltages at a full load. The two inductor currents and the two capacitor voltages are balanced under the test results. Fig. 10 gives the measured switch currents $i_{S 1}$ and $i_{S 2}$, inductor current $i_{L r 1}$ and flying capacitor current $i_{C f 1}$ at a full load. In the same manner, the measured switch currents $i_{S 1}$
and $i_{S 2}$, inductor current $i_{L r 1}$ and flying capacitor current $i_{C f 1}$ at a full load are shown in Fig. 11. When the switches S_{1} and S_{5} are in the on-state and S_{2} and S_{6} are in the off-state, the flying capacitor voltage $V_{C f 1}$ is equal to the input capacitor voltage $V_{\text {Cin1 }}$ with half of a switching period. Similarly, the flying capacitor voltage $V_{C f 1}=V_{\text {Cin } 2}$ when the switches S_{1} and S_{5} are in the off-state and S_{2} and S_{6} are in the on-state with half of a switching period. Therefore, both of the input capacitor voltages $V_{C i n 1}$ and $V_{C i n 2}$ are automatically balanced at $V_{i n} / 2$. Fig. 12 gives test results for the two input capacitor voltages $v_{\text {Cin } 1}$ and $v_{\text {Cin } 2}$ and the two flying capacitor voltages at the full

Fig. 8. Measured gate voltage, drain voltage and switch current of S_{2} at (a) 25% load and $V_{\text {in }}=750 \mathrm{~V}$ (b) 25% load and $V_{\text {in }}=800 \mathrm{~V}$ (c) 100% load and $V_{\text {in }}=750 \mathrm{~V}$ (d) 100% load and $V_{\text {in }}=800 \mathrm{~V}$.

Fig. 9. Measured results of the gate voltages $v_{S 1, g s}$ and $v_{S 2, g s}, \mathrm{AC}$ terminal voltages $v_{a b}$ and $v_{c d}$, resonant inductor currents $i_{L r 1}$ and $i_{L r 2}$, and resonant capacitor voltages $v_{C r 1}$ and $v_{C r 2}$ at full load.
load and 800 V input voltage case. It is clear that the two input capacitor voltages $v_{\text {Cin } 1}$ and $v_{\text {Cin } 2}$ are balanced at 400 V and $v_{C f 1}=v_{C / 2}=v_{\text {Cin } 1}=v_{\text {Cin2 } 2}=V_{\text {in }} / 2$. Fig. 13 shows the measured diode currents and two circuit output currents at the full load

Fig. 10. Measured switch currents $i_{S 1}$ and $i_{S 2}$, inductor current $i_{L r 1}$ and flying capacitor current $i_{C f 1}$ at full load.

Fig. 11. Measured switch currents $i_{S 3}$ and $i_{S 4}$, inductor current $i_{L r 1}$ and flying capacitor current $i_{C / 2}$ at full load.

Fig. 12. Measured results of input capacitor voltages and flying capacitor voltages at full load and 800 V input voltage case.

Fig. 13. Measured diode currents and two circuit output currents at full load condition.

Fig. 14. Measured efficiencies of the proposed converter with different input terminal voltages and load conditions.
condition. The output currents $i_{o 1}$ and $i_{o 2}$ are balanced. Fig. 14 shows the measured circuit efficiencies of the proposed converter under different load and input voltage conditions.

VI. CONCLUSION

This paper presents a new full-bridge resonant converter with the characteristics of low voltages stress MOSFETs, ZVS turn-on for the MOSFETs, no reverse recovery current
on the rectifier diodes, balanced two input capacitor voltages and high circuit efficiency. Two half-bridge converter legs with two spilt capacitors are adopted to reduce the voltage stress of the MOSFETs at $V_{i n} / 2$. Therefore, the proposed converter is suitable for use in high input voltage applications. The two flying capacitors $C_{f 1}$ and $C_{f 2}$ are used to automatically balance the two input capacitor voltages in every switching cycle. The two resonant circuits are used to increase the load power and to achieve ZVS for all of the power semiconductors. The system analysis, a design example and experiments are presented to demonstrate the effectiveness of the proposed converter.

Acknowledgment

This project is supported by the National Science Council of Taiwan under Grant NSC 102-2221-E-224-022 -MY3.

References

[1] A. D. Cheok, S. Kawamoto, T. Matsumoto, and H. Obi, "High power AC/DC and DC/AC inverter for high speed train," in Proc. of IEEE TENCON Conf., pp. 423-428, 2000.
[2] B. M. Song, R. McDowell, A. Bushnell, and J. Ennis, "A three-level DC-DC converter with wide input voltage operations for ship-electric-power-distribution systems," IEEE Trans. Plasma Sci, Vol. 32, No. 5, pp. 1856-1863, Oct. 2004.
[3] Bor-Ren Lin and Chun-Hao Huang, "Implementation of a three-phase capacitor-clamped active power filter under unbalanced condition," IEEE Trans. Ind. Electron., Vol. 53, No. 5, pp. 1621-1630, Oct. 2006.
[4] B. Gultekin and M. Ermis, "Cascaded multilevel converter-based transmission STATCOM: System design methodology and development of a 12 kV ± 12 MVAr power stage," IEEE Trans. Power Electron., Vol. 28, No. 11, pp. 4930-4950, Nov. 2013.
[5] O. Vodyakho and C. C. Mi, "Three-level inverter-based shunt active power filter in three-phase three-wire and four-wire systems," IEEE Trans. Power Electron., Vol. 24, No. 5, pp. 1350-1363, May 2009.
[6] H. Akagi and R. Kitada, "Control and design of a modular multilevel cascade BTB system using bidirectional isolated DC/DC converters," IEEE Trans. Power Electron., Vol. 26, No. 9, pp. 2457-2464, Sep. 2011.
[7] J. Rodriguez, J.-S. Lai, and F. Z. Peng, "Multilevel inverters: a survey of topologies, controls, and applications," IEEE Trans. Ind. Electron., Vol. 49, No. 4, pp. 724-738, Aug, 2002.
[8] J.-S. Lai and F. Z. Peng, "Multilevel converters-a new breed of power," IEEE Trans. Ind. Appl., Vol. 32, No. 3, pp. 509-517, May/Jun. 1996.
[9] B.-R. Lin and C.-C. Chen, "New three-level PWM DC/DC converter - analysis, design and experiments," Journal of Power Electronics, Vol. 14, No. 1, pp. 30-39, Jan. 2014.
[10] B.-R. Lin, "Implementation of a ZVS three-level converter with series-connected transformers," Journal of Power Electronics, Vol. 13, No. 2, pp. 177-185, Mar. 2013.
[11] F. Canales, P. M. Barbosa, and F. C. Lee, "A zero-voltage and zero current-switching three level DC/DC converter," IEEE Trans. Power Electron., Vol. 17, No. 6, pp. 898-904, Nov. 2002.
[12] W. Chen and X. Ruan, "Zero-voltage-switching PWM hybrid full-bridge three-level converter with secondary-voltage clamping scheme," IEEE Trans. Ind. Electron., Vol. 55, No. 2, pp. 644-654, Feb. 2008.
[13] J. P. Rodrigues, S. A. Mussa, I. Barbi, and A. J. Perin, "Three-level zero-voltage switching pulse-width modulation DC-DC boost converter with active clamping," IET Proc.- Power Electron., Vol. 3, No. 3, pp. 345-354, 2010.
[14] B. Yang, F. C. Lee, A. J. Zhang, and G. Huang, "LLC resonant converter for front end DC/DC conversion," in Proc. of IEEE APEC, Vol. 2, pp. 1108-1112, 2002.
[15] X. Xie, J. Zhang, Z. Chen, Z., Zhao, and Z. Qian, "Analysis and optimization of LLC resonant converter with a novel over-current protection circuit," IEEE Trans. Power Electron., Vol. 22, No. 2, pp. 435-443, Mar. 2007.
[16] D. Fu, Y. Liu, F. C. Lee, and M. Xu, "A novel driving scheme for synchronous rectifiers in LLC resonant converters," IEEE Trans. Power Electron., Vol. 24, No. 5, pp. 1321-1329, May 2009.
[17] Y. Gu, Z. Lu, L. Hang, Z. Qian, and G. Huang, "Three-level LLC series resonant DC/DC converter," IEEE Trans. Power Electron., Vol. 20, No. 4, pp. 781-789, Jul. 2005.
[18] K. Jin, and X. Ruan, "Hybrid full-bridge three-level LLC resonant converter - A novel DC-DC converter suitable for fuel-cell power system," IEEE Trans. Ind. Electron., Vol. 53, No. 5, pp. 1492-1503, Oct. 2006.

Bor-Ren Lin received his B.S. degree in Electronic Engineering from the National Taiwan University of Science and Technology, Taipei, Taiwan, in 1988, and his M.S. and Ph.D. degrees in Electrical Engineering from the University of Missouri, Columbia, MO, USA, in 1990 and 1993, respectively. From 1991 to 1993, he was a Research Assistant with the Power Electronic Research Center, University of Missouri. Since 1993, he has been with the Department of Electrical Engineering, National Yunlin University of Science and Technology, Douliou, Taiwan, where he is currently a Distinguished Professor. He is an Associate Editor of the Institution of Engineering and Technology Proceedings-Power Electronics. His current research interests include power-factor correction, multilevel converters, active power filters, and soft-switching converters. He has authored more than 200 published technical journal papers in the area of power electronics. Dr. Lin is an Associate Editor of the IEEE Transactions on Industrial Electronics. He was a recipient of Research Excellence Awards in 2004, 2005, 2007 and 2011 from the College of Engineering and the National Yunlin University of Science and Technology. He received Best Paper Awards from the 2007 and 2011 IEEE Conference on Industrial Electronics and Applications, the 2007 Taiwan Power Electronics Conference, the 2009 IEEE-Power Electronics and Drive Systems Conference, the 2012 Taiwan Electric Power Engineering Conference, and the 2014 IEEE-International Conference on Industrial Technology.

Zih-Yong Chen received his M.S. degree in Electrical Engineering at the National Yunlin University of Science and Technology, Yunlin, Taiwan (ROC), in 2014. His current research interests include the design and analysis of power factor correction techniques, switching mode power supplies and soft switching converters.

[^0]: Manuscript received Feb. 28, 2015; accepted Apr. 22, 2015
 Recommended for publication by Associate Editor Yan Xing.
 ${ }^{\dagger}$ Corresponding Author: linbr@yuntech.edu.tw
 Tel: +886-5-534-2601 ext. 4284, Fax: +886-5-531-2065, YunTech
 *Dept. of Electrical Eng., Nat'l Yunlin Univ. of Science a Tech., Taiwan

