• Title/Summary/Keyword: Zeolite X

Search Result 335, Processing Time 0.028 seconds

Li+- and H+-Exchanged Low-Silica X Zeolite as Selective Nitrogen Adsorbent for Air Separation

  • Kim, Jin-Bae
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.12
    • /
    • pp.1814-1818
    • /
    • 2003
  • $Li^+$ and $H^+$ co-exchanged LSXs (Li-H-LSX) with various ratios of $Li^+$ and $H^+$ were prepared, and those adsorption characteristics of nitrogen and oxygen were compared with Li-Na-LSX and Li-Ca-LSX. Li-H-LSX showed higher nitrogen capacity and selectivity than that of Li-Na-LSX in the wide range of Li-exchanged ratio. The nitrogen capacity of Li-Ca-LSX was slightly higher than that of fully Li- or Ca-exchanged LSX (Li- LSX or Ca-LSX). However, Li-Ca-LSX showed low nitrogen/oxygen adsorption selectivity until the Li content reached about 80%, which was a tendency near that of Ca-LSX.

Indium Modified Mesoporous Zeolite AlMCM-41 as a Heterogeneous Catalyst for the Knoevenagel Condensation Reaction

  • Katkar, Santosh S.;Lande, Machhindra K.;Arbad, Balasaheb R.;Rathod, Sandip B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1301-1304
    • /
    • 2010
  • The Indium modified mesoporous zeolite AlMCM-41 were synthesized by hydrothermal method and characterized by powder X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) techniques. The Knoevenagel condensation of aldehyde with malononitrile or ethyl cyanoacetate was carried out at reflux condition in ethanol by using heterogeneous In/AlMCM-41 catalyst. This method is fast, efficient, easy work-up and eco-friendly to afford the corresponding Knoevenagel adducts. The catalyst was recovered and reused for several cycles with consistent activity.

Study of nitrate concentration in Najaf Abad aquifer using GIS

  • Tabatabaei, Javad;Gorji, Leila
    • Membrane and Water Treatment
    • /
    • v.11 no.2
    • /
    • pp.167-172
    • /
    • 2020
  • The effectiveness of in situ sediment capping as a technique for heavy metal risk mitigation in Hyeongsan River estuary, South Korea was studied. Sites in the estuary were found previously to show moderate to high levels of contamination of mercury, methylmercury and other heavy metals. A 400 m x 50 m section of the river was selected for a thin layer capping demonstration, where the total area was divided into 4 sections capped with different combinations of capping materials (zeolite, AC/zeolite, AC/sand, zeolite/sand). Pore water concentrations in the different sites were studied using diffusive gradient in thin film (DGT) probes. All capping amendments showed reduction in the pore water concentration of the different heavy metals with top 5 cm showing %reduction greater than 90% for some heavy metals. The relative maxima for the different metals were found to be translated to lower depths with addition of the caps. For two-layered cap with AC, order of placement should be considered since AC can easily be displaced due to its relatively low density. Investigation of methylmercury (MeHg) in the site showed that MeHg and %MeHg in pore water corresponds well with maxima for sulfide, Fe and Mn suggesting mercury methylation as probably coupled with sulfate, Fe and Mn reduction in sediments. Our results showed that thin-layer capping of active sorbents AC and zeolite, in combination with passive sand caps, are potential remediation strategy for sediments contaminated with heavy metals.

Recovery of nitrogen from high strength waste stream by using natural zeolite (Clinoptilolite) (천연 제올라이트를 이용한 고농도 질소 회수)

  • Choi, Oh Kyung;Lee, Kwanhyoung;Dong, Dandan;Lee, Jaewoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.1
    • /
    • pp.105-111
    • /
    • 2016
  • This paper presents the applicability of natural zeolite (Clinoptilolite) for recovery of ammonium nitrogen from high-strength wastewater stream. Isotherm experiments showed the ammonium exchange Clinoptilolite followed Freundlich isotherm and its maximum exchange capacity was $18.13mg\;NH_4{^+}-N/g$ zeolite. The X-ray photoelectron spectroscopy (XPS) analysis indicated that a significant amount of nitrogen was adsorbed to the Clinoptilolite. Optimal flowrate for recovery of high concentration ammonium nitrogen was determined at 16 BV/d (=19.2 L/min) throughout the lab-scale column studies operated under various flowrate conditions. This study also provided a method to determine the recovery rate of final product of nitrogen fertilizer based on the model application to the lab-scale continuous data.

Zeolitification Characteristics of Coal Fly Ash by Amount of Na2CO3 Using the Fusion/Hydrothermal Method (용융/수열합성법으로부터 Na2CO3 첨가량에 따른 석탄비산재의 제올라이트화 특성)

  • Lee, Chang-Han
    • Journal of Environmental Science International
    • /
    • v.28 no.6
    • /
    • pp.553-559
    • /
    • 2019
  • In this study, zeolitic materials at $Na_2CO_3/CFA$ ratio of 0.6 - 1.8 were synthesized from coal fly ash from a thermal power plant using a fusion/hydrothermal method. The zeolitic materials were found to have cubic crystals structure and X-ray diffraction (XRD) peaks of Na-A zeolite by XRD and SEM analysis. When the zeolitic materials were synthesized from the coal fly ash, the XRD peaks of the zeolitic materials at $Na_2CO_3/CFA$ ratios of 0.9-1.8 had the same location as the XRD peaks of commercial Na-A zeolite. The XRD peaks of the Na-A zeolite ($Na_{12}Al_{12}Si_{12}O_{48}27.4H_2O$) were confirmed in the $2{\theta}$ in the range of 7.18-34.18. However, it was also confirmed that peaks of $CaCO_3$, an impurity inhibiting synthesis of Na-A zeolite from CaO and $Na_2CO_3$ in the coal fly ash, occurred in the XRD peaks of the zeolitic materials at $Na_2CO_3/CFA$ ratio of 1.5-1.8. The crystallinities of the zeolitic materials tended to increase gradually within the $Na_2CO_3/CFA$ ratio range of 0.6-1.8.

Crystallographic Evidence for the Reduction of CO in Partially Dehydrated Silver Zeolite A

  • Kim, Yang;Song, Seong-Hwan;Seff, Karl
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.3
    • /
    • pp.230-234
    • /
    • 1989
  • The crystal structure of $Ag^+$-exchanged zeolite A vacuum-dehydrated at $370^{\circ}C$ and then treated with carbon monoxide at $$23^{\circ}C$ has been determined by single crystal x-ray diffraction methods in the cubic space group Pm3m at $23^(1){\circ}C$ ; a = 12.116 (2)${\AA}$. The structure was refined to the final error indices $R_1\;=\;0.061\;and\;R_2$(weighted) = 0.068 using 349 independent reflections for which I > 3${\sigma}(I).\;3.6\;Ag_+-CO$ complexes, where -CO may represent -CHO or -$CH_2OH$, were found in each large cavity. By coordination to silver atoms followed by reaction with $Ag^{\circ}and\;H^+$ within the zeolite, carbon monoxide has been partially reduced. In about 28% of the sodalite units, a $Ag_6(Ag^+)_2$ cluster may be present. In about 37% of the sodalite units, three $Ag^+$ ions are found on threefold axes where they may be bridged by three water molecules. The remaining 35% of the sodalite units are empty of silver species. Two $Ag^+$ ions per unit cell are associated with 8-ring oxygens. The remaining ca $$3Ag^+$ ions per unit cell have been reduced during the synthesis and have migrated to form small silver crystallities on the surface of the zeolite single crystal.

Adsorption Characteristics of Ni2+, Zn2+ and Cr3+ by Zeolite Synthesized from Jeju Scoria (제주 스코리아로부터 합성한 제올라이트에 의한 Ni2+, Zn2+ 및 Cr3+의 흡착 특성)

  • Kim, Jung-Tae;Lee, Chang-Han;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.29 no.7
    • /
    • pp.739-748
    • /
    • 2020
  • The characteristics of heavy metal ion (Ni2+, Zn2+, and Cr3+) adsorption by zeolite synthesized from Jeju scoria using the fusion and hydrothermal method, were studied. The synthetic zeolite was identified as a Na-A zeolite by X-ray diffraction analysis and scanning electron microscopy images. The equilibrium of heavy metal ion adsorption by synthetic zeolite was reached within 60 min for Ni2+ and Zn2+, and 90 min for Cr3+. The uptake of heavy metal ions increased with increasing pH in the range of pH 3-6 and the uptake decreased in the order of Cr3+ > Zn2+ > Ni2+. For initial heavy metal concentrations of 20-250 mg/L at nonadjusted pH, the adsoption of heavy metal ions was well described by the pseudo second-order kinetic model and was well fitted by the Langmuir isotherm model. The maximum uptake of heavy metal ions obtained from the Langmuir model, decreased in the order of Zn2+ > Ni2+ > Cr3+, differing from the effect of pH on the uptake, which was mainly based on the different pH of the solutions.