DOI QR코드

DOI QR Code

Indium Modified Mesoporous Zeolite AlMCM-41 as a Heterogeneous Catalyst for the Knoevenagel Condensation Reaction

  • Katkar, Santosh S. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Lande, Machhindra K. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Arbad, Balasaheb R. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Rathod, Sandip B. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University)
  • Received : 2010.02.10
  • Accepted : 2010.03.12
  • Published : 2010.05.20

Abstract

The Indium modified mesoporous zeolite AlMCM-41 were synthesized by hydrothermal method and characterized by powder X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) techniques. The Knoevenagel condensation of aldehyde with malononitrile or ethyl cyanoacetate was carried out at reflux condition in ethanol by using heterogeneous In/AlMCM-41 catalyst. This method is fast, efficient, easy work-up and eco-friendly to afford the corresponding Knoevenagel adducts. The catalyst was recovered and reused for several cycles with consistent activity.

Keywords

References

  1. Jones, G. Org. React. 1967, 15, 204.
  2. Lai, S. M.; Ng, C. P.; Martin-Aranda, R.; Yeung, K. L. Micropor. Mesopor. Mater. 2003, 66, 239. https://doi.org/10.1016/j.micromeso.2003.09.014
  3. Tietze, L. F.; Beifuss, U. Comprehensive Organic Synthesis 1991, 2, 341.
  4. Meuly, W. C.; Othmer, K. Encyclopedia of Chemical Technology, 3rd ed.; John Wiley & Sons: New York, 1979; Vol. 7, p 196.
  5. Bigi, F.; Chesini, L.; Maggi, R.; Sartori, G. J. Org. Chem. 1999, 64, 1033. https://doi.org/10.1021/jo981794r
  6. Lakshmi, K. M.; Ravindra, A.; Venkat R., Ch.; Sreedhar, B.; Choudary, B. M. Adv. Synth. Catal. 2006, 348, 569. https://doi.org/10.1002/adsc.200505266
  7. Lakshmi, K. M.; Choudary, B. M.; Venkat R., Ch.; Koteswara, R. K.; Figueras, F. Chem. Commun. 1998, 1033.
  8. Su, C.; Chen, Z. C.; Zheng, Q. G. Synthesis 2003, 555.
  9. Jones, G. Organic Reactions; Wiley: New York, 1967; Vol 15, p 204.
  10. Allen, C. F. H.; Spangler, F. W. Org. Synth. Coll. 1955, Vol. III, 377.
  11. Bose, D. S.; Narsaiah, A. V. J. Chem. Res (S) 2001, 36.
  12. Cragoe, E. J., Jr.; Robb, C. M.; Spragne, J. M. J. Org. Chem. 1950, 15, 381. https://doi.org/10.1021/jo01148a024
  13. Jin, T. S.; Wang, A. Q.; Shi, F.; Han, L. S.; Liu, L. B.; Li, T. S. Arkivoc 2006, (xiv), 78.
  14. Bastus, J. B. Tetrahedron Lett. 1963, 6, 955.
  15. Narsaiah, A. V.; Basak, A. K.; Visali, B.; Nagaiah, K. Synth. Commun. 2004, 34, 2893. https://doi.org/10.1081/SCC-200026625
  16. Cardillo, G.; Fabbroni, S.; Gentilucci, L.; Gianotti, M.; Tolomelli, A. Synth. Commun. 2003, 33, 1587. https://doi.org/10.1081/SCC-120018782
  17. Acker, D. S.; Hertler, W. R. J. Am. Chem. Soc. 1962, 84, 3370. https://doi.org/10.1021/ja00876a028
  18. Junjie, H.; Yanfen, X.; Yingpeng, Su.; Xuegong, S.; Xinfu, P. Catal. Comm. 2008, 9, 2077. https://doi.org/10.1016/j.catcom.2008.04.006
  19. Lehnert, W. Tetrahedron 1974, 30, 301. https://doi.org/10.1016/S0040-4020(01)91461-9
  20. Green, B.; Crane, R. I.; Khaidem, I. S.; Leighton, R. S.; Newaz, S. S.; Smyser, T. E. J. Org. Chem. 1985, 50, 640. https://doi.org/10.1021/jo00205a016
  21. Shanthan, R. P.; Venkataratnam, R. V. Tetrahedron Lett. 1991, 32, 5821. https://doi.org/10.1016/S0040-4039(00)93564-0
  22. Kumbhare, R. M.; Sridhar, M. Catal. Comm. 2008, 9, 403. https://doi.org/10.1016/j.catcom.2007.07.027
  23. Pullabhotla, R. V. S. R.; Rahman, A.; Jonnalagadda, S. B. Catal. Comm. 2009, 10, 365. https://doi.org/10.1016/j.catcom.2008.09.021
  24. Bartoli, G.; Beleggia, R.; Giuli, S.; Giuliani, A.; Marcantoni, E.; Massaccesi, M.; Paletti, M. Tetrahedron Lett. 2006, 47, 6501. https://doi.org/10.1016/j.tetlet.2006.07.031
  25. Kantevari, S.; Bantu, R.; Nagarapu, L. J. Mol. Catal. A Chem. 2007, 269, 53. https://doi.org/10.1016/j.molcata.2006.12.039
  26. Gupta, R.; Gupta, M.; Paul, S.; Gupta, R. Bull. Korean. Chem. Soc. 2009, 30, 2419. https://doi.org/10.5012/bkcs.2009.30.10.2419
  27. Smith, K. Solids Supports and Catalysts in Organic Synthesis; Ellis Horwood: Chichester, 1992.
  28. Choudhary, V. R.; Jana, S. K.; Kiran, B. P. Catal. Lett. 2000, 64, 223. https://doi.org/10.1023/A:1019084314356
  29. Choudhary, V. R.; Jana, S. K.; Patil, N. S. Catal. Lett. 2001, 76, 235. https://doi.org/10.1023/A:1012313726908
  30. Choudhary, V. R.; Jana, S. K.; Patil, N. S. Tetrahedron Lett. 2002, 43, 1105. https://doi.org/10.1016/S0040-4039(01)02335-8
  31. Katkar, S. S.; Mohite, P. H.; Gadekar, L. S.; Vidhate, K. N.; Lande, M. K. Chin. Chem. Lett. 2010, 21, 421. https://doi.org/10.1016/j.cclet.2009.10.020
  32. Katkar, S. S.; Mohite, P. H.; Gadekar, L. S.; Arbad, B. R.; Lande, M. K. Centr. Eur. J. Chem. 2010, 8, 320. https://doi.org/10.2478/s11532-009-0151-7
  33. Katkar, S. S.; Arbad, B. R.; Lande, M. K. Arab J. Sci. Eng. 2009, Accepted.
  34. Shinde, S. V.; Jadhav, W. N.; Lande, M. K.; Gadekar, L. S.; Arbad, B. R.; Kondre, J. M.; Karade, N. N. Catal. Lett. 2008, 125, 57 https://doi.org/10.1007/s10562-008-9508-3
  35. Gadekar, L. S.; Mane, S. R.; Katkar, S. S.; Arbad, B. R.; Lande, M. K. Centr. Eur. J. Chem. 2009, 7, 550. https://doi.org/10.2478/s11532-009-0050-y
  36. Gadekar, L. S.; Katkar, S. S.; Mane, S. R.; Arbad, B. R.; Lande, M. K. Bull. Korean. Chem. Soc. 2009, 30, 2534.
  37. Pourahmad, A.; Sohrabnezhad, S.; Sadjadi, M. S.; Zare, K. Mater. Lett. 2008, 62, 655. https://doi.org/10.1016/j.matlet.2007.06.027

Cited by

  1. P2O5/SiO2 as an efficient heterogeneous catalyst for the synthesis of heterocyclic alkene derivatives under thermal solvent-free conditions vol.3, pp.8, 2013, https://doi.org/10.1039/c3cy00095h
  2. Novel synthesis of Zirconyl Schiff base complex-functionalized MCM-48 using in oxidation of sulfides and Knoevenagel condensation reaction vol.23, pp.3, 2016, https://doi.org/10.1007/s10934-016-0124-0
  3. Mesolite: An Efficient Heterogeneous Catalyst for One-Pot Synthesis of 2-Amino-4H-chromenes pp.1563-5333, 2018, https://doi.org/10.1080/10406638.2016.1159584
  4. Catalytic property of an indium-deposited powder-type material containing silicon and its dependence on the dose of indium nano-particles irradiated by a pulse arc plasma process vol.7, pp.6, 2017, https://doi.org/10.1063/1.4990517
  5. ChemInform Abstract: Indium Modified Mesoporous Zeolite AlMCM‐41 as a Heterogeneous Catalyst for the Knoevenagel Condensation Reaction. vol.41, pp.40, 2010, https://doi.org/10.1002/chin.201040073
  6. Synthesis, Characterization and Catalytic Application of MoO3/CeO2-ZrO2 Solid Heterogeneous Catalyst for the Synthesis of Benzimidazole Derivatives vol.31, pp.10, 2010, https://doi.org/10.5012/bkcs.2010.31.10.2835
  7. Novel and versatile solid superbases derived from magnesium-zirconium composite oxide and their catalytic applications vol.4, pp.12, 2010, https://doi.org/10.1039/c3ra46559d
  8. MgO Supported Al2O3 Oxide: A New, Efficient, and Reusable Catalyst for Synthesis of Chalcones vol.14, pp.2, 2010, https://doi.org/10.23939/chcht14.02.169
  9. Catalytic C-H Bond Activation and Knoevenagel Condensation Using Pyridine-2,3-Dicarboxylate-Based Metal-Organic Frameworks vol.6, pp.20, 2010, https://doi.org/10.1021/acsomega.1c01155