DOI QR코드

DOI QR Code

Li+- and H+-Exchanged Low-Silica X Zeolite as Selective Nitrogen Adsorbent for Air Separation

  • Kim, Jin-Bae (Department of Chemical Engineering, Hoseo University)
  • Published : 2003.12.20

Abstract

$Li^+$ and $H^+$ co-exchanged LSXs (Li-H-LSX) with various ratios of $Li^+$ and $H^+$ were prepared, and those adsorption characteristics of nitrogen and oxygen were compared with Li-Na-LSX and Li-Ca-LSX. Li-H-LSX showed higher nitrogen capacity and selectivity than that of Li-Na-LSX in the wide range of Li-exchanged ratio. The nitrogen capacity of Li-Ca-LSX was slightly higher than that of fully Li- or Ca-exchanged LSX (Li- LSX or Ca-LSX). However, Li-Ca-LSX showed low nitrogen/oxygen adsorption selectivity until the Li content reached about 80%, which was a tendency near that of Ca-LSX.

Keywords

References

  1. Minato, H.; Watanabe, M. Sci. Pap. Coll. Gen. Educ., Univ. Tokyo 1978, 28, 135.
  2. Minato, H.; Watanabe, M. Sci. Pap. Coll. Gen. Educ., Univ. Tokyo 1978, 28, 215.
  3. Coe, C. G.; Kuznicki, S. M.; Srinivasan, R.; Jenkins, R. J. Perspectives in Molecular Sieve Science: ACS Symp. Ser. 1988, 368, 478. https://doi.org/10.1021/bk-1988-0368.ch030
  4. Milton, R. M. U. S. Patent 2 882 244, 1959.
  5. McKee, D. W. U. S. Patent 3 140 933, 1964.
  6. Chao C. C. U. S. Patent 4 859 217, 1989.
  7. Baksh, M. S. A.; Kikkinides, E. S.; Yang, R. T. Sep. Sci. Technol. 1992, 27, 277. https://doi.org/10.1080/01496399208018880
  8. Gaffney, T. R. Current Opinion in Solid State & Material Science 1996, 1, 69. https://doi.org/10.1016/S1359-0286(96)80013-1
  9. Kirner, J. F.; Pa, O. U. S. Patent 5 268 023, 1993.
  10. Rege, S. U.; Yang, R. T. Ind. End. Chem. Res. 1997, 36, 5358. https://doi.org/10.1021/ie9705214
  11. Hutson, N. D.; Rege, S. U.; Yang, R. T. AIChE 1999, 45, 724. https://doi.org/10.1002/aic.690450407
  12. Yoshida, S.; Ogawa, N.; Kamioka, K.; Hirano, S.; Mori, T. Adsorption 1999, 5, 57. https://doi.org/10.1023/A:1026402425399
  13. Yoshida, S.; Hirano, S.; Harada, A.; Nakano, M. Micropor. Mesopor. Mater. 2001, 46, 203. https://doi.org/10.1016/S1387-1811(01)00290-6
  14. Sherry, H. S. J. Phys. Chem. 1966, 70, 1158. https://doi.org/10.1021/j100876a031
  15. Coe, C. G.; Kirner, J. F.; Pierantozz, R.; White, T. R. U. S. Patent 5 152 813, 1992.
  16. Kirner, J. F. U.S. Patent 5 268 023, 1993.
  17. Leavitt, F. W. U.S. Patent 5 451 383, 1995.
  18. Leavitt, F. W. U.S. Patent 5 681 477, 1997.
  19. Klinowski, J.; Ramdas, S.; Thomas, J. M.; Fyfe, C. A.; Hartman, J. S. J. Chem. Soc., Faraday Trans. 2 1982, 78, 1025. https://doi.org/10.1039/f29827801025
  20. Thomas, J. M.; Fyfe, C. A.; Ramdas, S.; Klinowski, J.; Gobbi, G. C. J. Phys. Chem. 1982, 86, 3061. https://doi.org/10.1021/j100213a003
  21. Shen, D.; Bülow, M.; Jale, S. R.; Fitch, F. R.; Ojo A. F. Micropor. Mesopor. Mater. 2001, 48, 211. https://doi.org/10.1016/S1387-1811(01)00355-9

Cited by

  1. Adsorption in Li-LSX Zeolite vol.118, pp.41, 2014, https://doi.org/10.1021/jp5068236
  2. and Their Binary Mixtures on LiLSX Zeolite: Experimental Data and Thermodynamic Analysis vol.53, pp.17, 2014, https://doi.org/10.1021/ie500268s
  3. Proton Adsorption Selectivity of Zeolites in Aqueous Media: Effect of Exchangeable Cation Species of Zeolites vol.2, pp.1, 2015, https://doi.org/10.3390/environments2010091
  4. Highly crystalline LSX zeolite derived from biosilica for copper adsorption: the green synthesis for environmental treatment vol.22, pp.2, 2015, https://doi.org/10.1007/s10934-015-9912-1
  5. Gas transport properties of LiA type zeolite-filled poly(trimethylsilylpropyne) membranes vol.55, pp.9, 2015, https://doi.org/10.1134/S0965544115090066
  6. Macrocyclic Weakly Coordinating Anions vol.21, pp.41, 2015, https://doi.org/10.1002/chem.201501983
  7. Study on adsorption of N2 and O2 by magnesium (II)-exchanged zeolite A vol.478, pp.1, 2003, https://doi.org/10.1016/j.jallcom.2008.11.082
  8. Large-pore periodic mesoporous silicas with crystalline channel walls and exceptional hydrothermal stability synthesized by a general high-pressure nanocasting route vol.152, pp.None, 2003, https://doi.org/10.1016/j.micromeso.2011.11.031
  9. Ultrasonic assisted synthesis of Bikitaite zeolite: A potential material for hydrogen storage application vol.36, pp.None, 2003, https://doi.org/10.1016/j.ultsonch.2016.12.032
  10. A Thermodynamic Model for Pure and Binary Adsorption Equilibria of N2 and O2 on Lithium-Exchanged Low Silicon-to-Aluminum Ratio X Zeolite vol.66, pp.2, 2021, https://doi.org/10.1021/acs.jced.0c00830