• 제목/요약/키워드: ZVS turn-on

검색결과 106건 처리시간 0.027초

보조회로를 이용한 영전압 스위칭 플라이백 컨버터 (ZVS Flyback Converter Using a Auxiliary Circuit)

  • 김태웅;강창수
    • 대한전자공학회논문지TE
    • /
    • 제37권5호
    • /
    • pp.11-116
    • /
    • 2000
  • 본 논문에서는 영전압 스위칭에 의해 스위칭 손실과 전압 스트레스로 줄이는 토폴로지를 제안하였다. 일반적으로 스위칭 모드 변환시에는 과도한 전압과 전류가 기생 성분에 의해서 발생하는데 이것은 전압 스트레스와 전력 손실을 발생시켜 전원 장치의 성능에 영향을 미치어 전체 효율이 감소한다. 실제로 플라이백 컨버터에서 스위치의 천이 첨두 전압과 전류는 기생성분에 의해서 발생한다. 이러한 문제를 보완하기 위하여 보조회로를 이용한 영전압 스위칭 플라이백 컨버터를 제안한다. 기존의 플라이백 토폴로지에 보조 회로를 추가하여 전력 손실을 감소시키고 스위칭 전압 스트레스를 최소로 하였다. 보조 회로 내에 스너버 캐패시터는 주 스위치의 온·오프시 제어 전압 변화시간에 의해 영전압 스위칭을 가능하게 하여 전압 스트레스 및 전력 손실을 감소시킨다. 본 논문에서는 회로의 세부적인 분석을 하고 동작과정을 설명하였고 500W, 100㎑ 대의 보조회로를 사용한 영전압 스위칭 플라이백 컨버터를 설계하여 기존의 하드 스위칭 플라이백 컨버터와의 효율을 비교하였다.

  • PDF

Boost Type ZVS-PWM Chopper-Fed DC-DC Power Converter with Load-Side Auxiliary Resonant Snubber and Its Performance Evaluations

  • Ogura, Koki;Chandhaket, Srawouth;Ahmed, Tarek;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제3B권3호
    • /
    • pp.147-154
    • /
    • 2003
  • This paper presents a high-frequency boost type ZVS-PWM chopper-fed DC-DC power converter with a single active auxiliary edge-resonant snubber at the load stage which can be designed for power conditioners such as solar photovoltaic generation, fuel cell generation, battery and super capacitor energy storages. Its principle operation in steady-state is described in addition to a prototype setup. The experimental results of boost type ZVS-PWM chopper proposed here, are evaluated and verified with a practical design model in terms of its switching voltage and current waveforms, the switching v-i trajectory and the temperature performance of IGBT module, the actual power conversion efficiency, and the EMI of radiated and conducted emissions, and then discussed and compared with the hard switching scheme from an experimental point of view. Finally, this paper proposes a practical method to suppress parasitic oscillation due to the active auxiliary resonant switch at ZCS turn-off mode transition with the aid of an additional lossless clamping diode loop, and can be reduced the EMI conducted emission.

태양광 발전 시스템용 소프트 스위칭 다상 부스트 컨버터 (Soft Switching Multi-Phase Boost Converter for Photovoltaic System)

  • 이주혁;김재형;장수진;원충연;정용채
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 추계학술대회 논문집
    • /
    • pp.184-186
    • /
    • 2007
  • 본 논문에서는 소프트 스위칭 다상 부스트 컨버터 회로를 제안하였다. 태양의 일사량 및 주위온도 등에 의해 출력전압의 변동이 많은 태양전지로부터 정전압을 얻기 위해서 고효율의 전력변환 장치가 필요하다. 제안된 컨버터를 이용하여 동작 범위 내에서 변동하는 입력전압을 정출력전압으로 제어하고, 입력전류 리플과 출력전압 리플을 저감시킬 수 있다. 또한 ZVS, ZCS를 이용하여 스위칭 순간에 Turn-on, Turn-off 손실을 감소할 수 있다. 본 논문에서는 소프트 스위칭 다상 부스트 컨버터를 적용하여 시뮬레이션을 수행하였다.

  • PDF

환류다이오드의 전압스트레스가 강하된 Soft-Switching Buck 컨버터 (Soft-Switching Buck Converter dropped Voltage Stress of Free-Wheeling Diode)

  • 이건행;김영석;김명오
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.136-139
    • /
    • 2004
  • This paper presents a buck circuit topology of high-frequency with a single switching element. It solved the problem which arised from hard-switching in high-frequency using a resonant snubber and operating under the principle of ZCS turn-on and ZVS turn-off commutation schemes. In the existing circuit, it has the voltage stress which is twice of input voltage in free-wheeling diode. But in the proposed circuit, it has voltage stress which is lower than input voltage with modifing a location of free-wheeling diode. In this paper, it explained the circuit operation of each mode and confirmed the waveform of each mode with simulation result. Also the experiment result verified the simulation waveform and compared the existing voltage stress of free-wheeling diode with the proposed voltage stress of that. Moreover, it compares and analyzes the proposed circuit's efficiency with the hard-switching circuit's efficiency according to the change of load current.

  • PDF

Dual 컨버터로 동작하는 새로운 ZCS PWM Boost Converter (A New ZCS PWM Boost Converter with operating Dual Converter)

  • 김태우;진기호;김학성
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.525-528
    • /
    • 2002
  • A Novel Zero Current Switching(ZCS) Pulse Width Modulation(PWM) boost converter for reducing two rectifiers reverse recovery related losses Is proposed. The switches of the proposed converter are operating to work alternatively turn-on and turn-off with soft switching(ZVS, ZCS) condition. The reverse recovery related switching losses and EMI problems of the proposed converter eliminates the reverse recovery current of the freewheeling diode(D, Dl) by adding the resonant inductor Lr, in series with the switch S2. The voltage and current stresses of the components are similar to those in its conventional hard switching counterpats. As mentioned above, the characteristics are verified through experimental results.

  • PDF

A Gate Drive Circuit for Low Switching Losses and Snubber Energy Recovery

  • Shimizu, Toshihisa;Wada, Keiji
    • Journal of Power Electronics
    • /
    • 제9권2호
    • /
    • pp.259-266
    • /
    • 2009
  • In order to increase the power density of power converters, reduction of the switching losses at high-frequency switching conditions is one of the most important issues. This paper presents a new gate drive circuit that enables the reduction of switching losses in both the Power MOSFET and the IGBT. A distinctive feature of this method is that both the turn-on loss and the turn-off loss are decreased simultaneously without using a conventional ZVS circuit, such as the quasi-resonant adjunctive circuit. Experimental results of the switching loss of both the Power MOSFET and the IGBT are shown. In addition, an energy recovery circuit suitable for use in IGBTs that can be realized by modifying the proposed gate drive circuit is also proposed. The effectiveness of both the proposed circuits was confirmed experimentally by the buck-chopper circuit.

H-보조 공진 회로를 갖는 소프트 스위칭 부스트 컨버터의 설계 및 해석 (Design and Anaysis of Soft Switching Boost Converter with H-auxiliary resonant circuit)

  • 차길로;박소리;박상훈;원충연;정용채;이수원
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 추계학술대회 논문집
    • /
    • pp.118-120
    • /
    • 2008
  • In this paper, a soft switching boost converter with H-auxiliary resonant circuit is proposed. Using some resonant components, the circuit can be achieved the soft switching capability. Each of the switches in the proposed circuit perform ZVS at turn off and ZCS at turn on. Thus, the high efficiency characteristic can also be obtained, and then the size of the total system can be reduced. The operational principle of the soft switching boost converter in theoretically analyzed. Simulation results validate the analysis and experimental results demonstrate soft switching boost converter benefits.

  • PDF

Medium Voltage Resonant Converter with Balanced Input Capacitor Voltages and Output Diode Currents

  • Lin, Bor-Ren;Du, Yan-Kang
    • Journal of Power Electronics
    • /
    • 제15권2호
    • /
    • pp.389-398
    • /
    • 2015
  • This paper presents a 1.92 kW resonant converter for medium voltage applications that uses low voltage stress MOSFETs (500V) to achieve zero voltage switching (ZVS) turn-on. In the proposed converter, four MOSFETs are connected in series to limit the voltage stress of the power switches at half of the input voltage. In addition, three resonant circuits are adopted to share the load current and to reduce the current stress of the passive components. Furthermore, the transformer primary and secondary windings are connected in series to balance the output diode currents for medium power applications. Split capacitors are adopted in each resonant circuit to reduce the current stress of the resonant capacitors. Two balance capacitors are also used to automatically balance the input capacitor voltage in every switching cycle. Based on the circuit characteristics of the resonant converter, the MOSFETs are turned on under ZVS. If the switching frequency is less than the series resonant frequency, the rectifier diodes can be turned off under zero current switching (ZCS). Experimental results from a prototype with a 750-800 V input and a 48V/40A output are provided to verify the theoretical analysis and the effectiveness of the proposed converter.

A New High Frequency Linked Soft-Switching PWM DC-DC Converter with High and Low Side DC Rail Active Edge Resonant Snubbers for High Performance Arc Welder

  • Kang, Ju-Sung;Fathy, Khairy;Hong, Doo-Sung;Suh, Ki-Young;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.281-283
    • /
    • 2006
  • This paper presents two new circuit topologies of DC bus lineside active edge resonant snubber assisted soft-switching PWM full-bridge DC-DC converter acceptable for either utility AC 200V-rms or AC 400V-rms input voltage source. All the active power switches in the full-bridge arms and DC busline can achieve ZCS turn-on and ZVS turn-off commutations and the total turn-off switching power losses of all active switches can be reduced for high-frequency switching action. The effectiveness of these new DC-DC converters topologies is proved for low voltage and large current high efficiency DC-DC power supplies as TIG arc welding machine from a practical point of view.

  • PDF

A Novel Soft-Switching PWM DC/DC Converter with DC Rail Series Switch-Parallel Capacitor Edge Resonant Snubber Assisted by High-Frequency Transformer Parasitic Components

  • ;이현우
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2005년도 학술대회 논문집
    • /
    • pp.377-382
    • /
    • 2005
  • This paper presents two new circuit topologies of DC bus lineside active edge resonant snubber assisted soft-switching PWM full-bridge DC-DC converter acceptable for either utility AC 200V-rms or AC 400V-rms input voltage source. One topology of proposed DC-DC converters is composed of a typical voltage source-fed full-bridge high frequency PWM inverter using DC busline side series power semiconductor switching devices with the aid of a parallel capacitive lossless snubber. All the active power switches in the full-bridge arms and DC busline can achieve ZCS turn-on and ZVS turn-off commutations and the total turn-off switching power losses of all active switches can be reduced for high-frequency switching action. It is proved that the more the switching frequency of full-bridge soft switching inverter increases, the more soft-switching PWM DC-DC converter with a hish frequency transformer link has remarkable advantages for its efficiency and power density as compared with the conventional hard-switching PWM inverter type DC-DC converter

  • PDF