Boost Type ZVS-PWM Chopper-Fed DC-DC Power Converter with Load-Side Auxiliary Resonant Snubber and Its Performance Evaluations

Koki Ogura*, Srawouth Chandhaket*, Tarek Ahmed* and Mutsuo Nakaoka*

Abstract - This paper presents a high-frequency boost type ZVS-PWM chopper-fed DC-DC power converter with a single active auxiliary edge-resonant snubber at the load stage which can be designed for power conditioners such as solar photovoltaic generation, fuel cell generation, battery and super capacitor energy storages. Its principle operation in steady-state is described in addition to a prototype setup. The experimental results of boost type ZVS-PWM chopper proposed here, are evaluated and verified with a practical design model in terms of its switching voltage and current waveforms, the switching v-i trajectory and the temperature performance of IGBT module, the actual power conversion efficiency, and the EMI of radiated and conducted emissions, and then discussed and compared with the hard switching scheme from an experimental point of view. Finally, this paper proposes a practical method to suppress parasitic oscillation due to the active auxiliary resonant switch at ZCS turn-off mode transition with the aid of an additional lossless clamping diode loop, and can be reduced the EMI conducted emission.

Keywords: DC-DC converter, Active auxiliary edge-resonant snubber, Zero voltage soft switching (ZVS), PWM, v-i switching trajectory representation, Parasitic oscillation diode clamping loop, EMI noise evaluations

1. Introduction

In recent years, the higher efficiency and the more advanced power conversion, energy utilization equipment, a variety of circuit topologies of the soft-switching DC-DC power converter are urgently required. The practical developments of isolated or non-isolated DC-DC power converter using power MOSFETs or IGBTs have attracted special interest in various fields related to the alternative and renewable energy generation and power supplies of smallscale distributed type photovoltaic generation system (PVGS), fuel cell generation system (FCGS) and battery or super capacitor energy storage systems for residential power energy applications, information and telecommunication equipment, and automobile power electronic applications including pure electric vehicle (EV) and hybrid EV systems. Because of the high-frequency switching PWM technologies with the great advances of power semiconductor devices such as power MOSFETs, IGBTs, SITs, in addition to microprocessor control board and the magnetic circuit components of inductor and transformer, the DC-DC power converters have been strongly demanded miniaturization in size, lighter in weight, and high performances (high-speed response, and waveform quality). However, the significant problems for the high-frequency switching

Received July 1, 2003; Accepted September 15, 2003

PWM power conversion technologies cause system efficiency reduction due to increased switching losses and snubber circuit losses, the higher dv/dt and di/dt electrical surge stresses, high frequency leak current to the ground and EMI noises; radiated emission and conducted emission. For effective and practical solutions, it is presently necessary to use the principles of soft-switching power conversion PWM techniques, which are based on active auxiliary edge resonant snubber[1]-[6] or passive edge resonant snubber[7],[8].

In this paper, the circuit topology of the boost type ZVS-PWM chopper-fed DC-DC power converter with a simple active auxiliary edge-resonant snubber is proposed. The experimental results of boost type ZVS-PWM chopper-fed DC-DC power converter designed for the maximum 3kW output power, and switching frequency 16kHz are presented and discussed, together with comparative operating characteristics of this ZVS-PWM chopper-fed DC-DC power converter and conventional hard switching PWM one. In addition, this paper points out the practical method to protect a large voltage spike due to unnecessary and undersigned parasitic oscillation of the auxiliary resonant active power switch at ZCS turn-off commutation. This parasitic oscillation of this active resonant snubber can be suppressed with the aid of the simple lossless clamping diode connected with the auxiliary resonant snubber which can utilize at the loadside energy processing. Furthermore, the practical effectiveness of this ZVS-PWM chopper-fed DC-

Department of Electrical and Electronic Engineering, The Graduate School of Science and Engineering, Yamaguchi University, Japan. (ogura@pe-news1.eee.yamaguchi-u.ac.jp)

DC power converter with clamping diode loop is substantially proved on the measured conducted EMI noise from an experimental point of view.

2. Boost Type ZVS-PWM Chopper-fed **DC-DC Power Converter**

2.1 Circuit Description

Fig. 1 shows the circuit configuration of the proposed edge-resonant boost type ZVS-PWM chopper-fed DC-DC power converter using IGBTs. This converter is based on the conventional boost type PWM chopper-fed DC-DC power converter, which also includes an active auxiliary resonant snubber circuit composed of a resonant inductor $L_{\rm r}$, a resonant capacitor $C_{\rm r}$, a lossless snubber capacitor $C_{\rm s}$, an auxiliary active power swich S_2 and an auxiliary diode D_2 . This DC-DC power converter is an improved circuit of [1]. The converter circuit proposed in [1] has a problem which the auxiliary switch is turned off under hard switching. However this auxiliary switch in the proposed boost type ZVS-PWM chopper-fed DC-DC power converter can operate ZCS and ZVS under the turn-off transition by adding a resonant capacitor C_r .

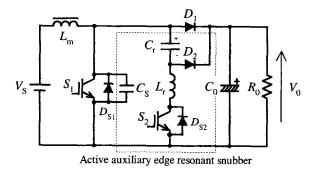


Fig. 1 Zero voltage soft switching boost chopper type DC-DC converter using auxiliary edge resonant snubber

2.2 Circuit Operation

The mode transition of boost type ZVS-PWM chopperfed DC-DC power converter are depicted in Fig. 2. The gate voltage pulse sequences of the main active power switch and the auxiliary active power switch are indicated in Fig. 3, the operating voltage and current waveforms of each component are shown in Fig. 3. The operating principle in mode transitions of this chopper-fed DC-DC power converter is explained as follows;

Mode 0 The stored energy of the boost inductor L_m is transferred to the load side. When the auxiliary power switch S_2 is turned on, Mode 0 changes to Mode 1.

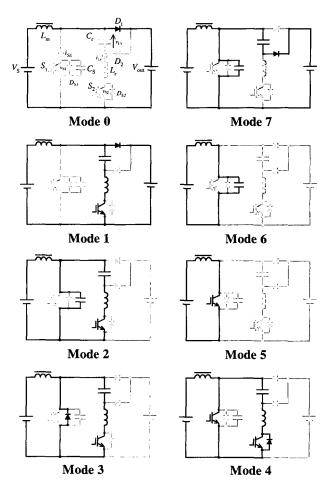


Fig. 2 Mode transitions and equivalent circuits

Mode 1 When the auxiliary power switch S_2 is turned on with ZCS, the current through the diode D_1 begins to flow the active auxiliary resonant snubber circuit. The current flow through the resonant inductor L_r , and the resonant capacitor $C_{r,}$ and the auxiliary power switch S_2 increases sinusoidally.

Mode 2 When the diode D_1 is turned off, the current flowing through D_1 commutates through the active auxiliary resonant snubber circuit. The lossless snubber capacitor C_s connected in parallel with the main power switch S_1 is produced the edge-resonant mode with a resonant inductor L_r and resonant capacitor C_r . Therefore, the lossless snubber capacitor C_s becomes the discharging mode, and the voltages across C_s drops gradually. Then, Mode 2 changes to Mode 3.

Mode 3 When the voltage across the snubber capacitor C_s becomes zero, the anti-parallel diode D_{S1} of the main power switch S_1 is naturally turned on. As a result, the main power switch S_1 can achieve ZVS and ZCS hybrid soft commutation in a turn-on transition when current flow through the anti-parallel diode D_{S1} decreases and naturally shifts to the main power switch S_1 by giving the gate voltage signal of the main power switch S_1 while D_{S1} is turned on.

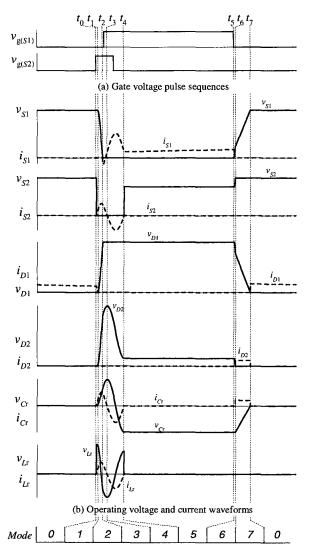


Fig. 3 Gate pulse sequences and typical operating waveforms

Mode 4 When the current of the main power switch S_1 becomes bigger than the current flowing through a boost inductor L_m , the diode D_{S2} in anti-parallel with the auxiliary power switch S_2 is naturally turned on, and the current flowing through S_2 begins to commutate to the anti-parallel diode D_{S2} . By turning the gate voltage pulse signal delivered to the auxiliary power switch S_2 during this period, an auxiliary power switch S_2 can achieve complete ZVS and ZCS hybrid soft commutation under the turn-off transition when the current flowing through the auxiliary power switch S_2 shifts exactly.

Mode 5 When the auxiliary power switch S_2 is turned off, the resonant current flowing through the inductor L_r and the capacitor C_r becomes zero; all the circuit operations are identical to the conduction state of the conventional boost type PWM chopper-fed DC-DC power converter.

Mode 6 When the main power switch S_1 is turned off with ZVS, the current flowing through the boost inductor L_m flows through the snubber capacitor C_s . Therefore, the

lossless snubber capacitor C_s becomes its charging mode, and the voltages across the lossless capacitor C_s increases gradually.

Mode 7 When the voltage across the lossless snubber capacitor C_s becomes larger than the sum of the voltage across the resonant capacitor C_r and the output voltage V_o , the auxiliary diode D_2 is turned on. When the voltage across the lossless snubber capacitor C_s equals to the output average voltage V_o and the voltage across the auxiliary resonant capacitor C_r becomes zero, the diode D_2 is naturally turned off. At the same time, the diode D_1 is turned on and Mode 7 shifts to Mode 0.

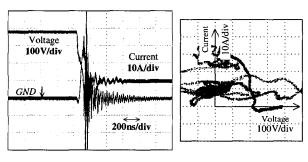
This boost type ZVS-PWM chopper-fed DC-DC power converter repeats cyclically the steady-state operation described above.

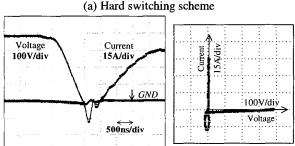
3. Experimental Results and Performance Evaluations

3.1 Design Specifications and Switching Operating Waveforms

The experimental design specifications and circuit parameter of the boost type ZVS-PWM chopper-fed DC-DC power converter with a single active auxiliary edgeresonant snubber is listed in Table 1.

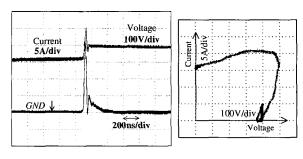
Table 1 Design specifications and circuit parameters

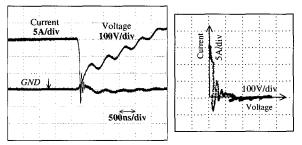

DC Input Voltage	$V_{\rm S}$	200V	Snubber Capacitor	$C_{\rm s}$	33nF
DC Output Voltage	V_0	380V	Resonant Inductor	$L_{\rm r}$	7.6µH
Switching Frequency	f_{s}	16kHz	Resonant Capacitor	$C_{\rm r}$	121nF
Output Capacitor	C_0	8,200μF	Boost Inductor	$L_{\rm b}$	1.02mH


(Remarks)

- Power Switching Devices
- . IGBT $[S_1, S_2]$ Mitsubishi CM75DU-24H
- . Diode $[D_1]$ Toshiba 30JL2C41
- . Diode $[D_2]$ Hitachi DFM30F12

Fig. 4 (a) illustrates the voltage and current operating waveforms and its v-i trajectory in case of turn-on commutation of the main power switch S_1 of the hard switching boost type PWM chopper-fed DC-DC power converter in the hard switching. Fig. 4 (b) illustrates the voltage and current operating waveforms and its v-i trajectory in case of turn-on commutation of the main power switch S_1 of the ZVS-PWM one in the soft switching. From the voltage and current waveforms in Fig. 4 (a) under a condition of a hard switching commutation, the higher dv/dt and rapid di/dt characteristics as well as voltage surge and current surge can be observed. Moreover, taking a look at the v-i trajectory in Fig. 4 (a), it spread out over the first quadrant and the second quadrant area. Therefore, it is based on the in-


censement of the electrical switching stresses for IGBT used in the converter, and increase of the switching power loss and EMI noises. However, switching waveforms in Fig. 4 (b) under a condition of soft-switching commutation, the softened dv/dt and di/dt, and the suppression of the voltage surge and current surge can be achieved. Observing the v-i trajectory in Fig. 4 (b), it goes along at the voltage axis and current axis of the main power switching device, so the ideal soft switching operation can be achieved without the switching losses at turn-on transition. Therefore, under the soft-switching scheme, the switching power losses, voltage surge and current surge don't occur because the switching can be achieved under a condition of ZVS and ZCS.



(b) Soft switching scheme **Fig. 4** Voltage and current waveforms and v-i trajectory in case of turn-on transition of main power switch S_1

Fig. 5 (a) shows the voltage and current operating waveforms and its v-i trajectory in case of turn-off switching commutation in the hard switching. Fig. 5 (b) illustrates the voltage and current operating waveforms and its v-i trajectory in case of turn-off switching commutation in the softswitching. From the voltage and current switching waveforms at turn-off commutation as depicted in Fig. 5 (a) under the hard switching commutation, there is overlapped region of voltage and current switching waveforms. Moreover, observing the v-i trajectory in Fig. 5 (a), it spreads out in the first quadrant in the v-i plane. Therefore, this concerns with increase of the switching power losses. Therefore, in Fig. 5 (b) under soft switching commutation, except for the overlapping period of the switching voltage and falling current during the turn-off period and tail current during the tail period of IGBT, there is no overlapping region. And taking a look at the v-i trajectory illustrated in Fig. 5 (b), it is nearly moving along the voltage axis and current axis of v-i plane. Therefore, under a soft-switching PWM scheme, the switching power losses of the power switch can be lowered as compared with that of the hard switching PWM scheme.

(a) Hard switching scheme

(b) Soft switching scheme

Fig. 5 Voltage and current waveforms and *v-i* trajectory in case of turn-off transition of main power switch S₁

3.2 Temperature Characteristics of Main Power Switch

A small pin hole is made under the metal bottom side of IGBT as the main switch S_1 power module package as shown in Fig. 6, and the tip of the K-type thermocouple probe is tightly inserted into the central portion of the IGBT module. The measured temperature of the IGBT module package under a both operating conditions of the hard switching (H-SW) and soft-switching (S-SW) PWM schemes is depicted in Fig. 7.

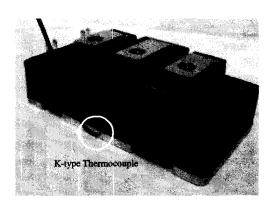


Fig. 6 Temperature measurement of IGBT module using K-type thermocouple

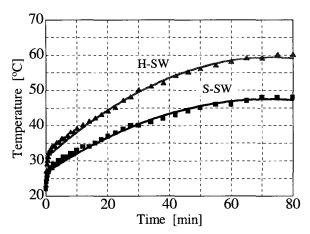


Fig. 7 Temperature measurement of IGBT module

As shown in Fig. 7, after 80 minutes of operation, the temperature of IGBT under hard switching scheme is 60° C, but the temperature under soft-switching scheme is 48° C. So soft-switching reduced temperature about 12° C as compared with hard switching scheme. From these results, the downsizing of the cooling equipment can be substantially achieved, because the switching power losses of the main power switch S_1 can be sufficiently reduced with using ZVS-PWM scheme.

3.3 Actual Power Conversion Efficiency Characteristics

The actual power conversion efficiency of hard switching boost type PWM chopper-fed DC-DC Power converter and soft switching ZVS-PWM type can be respectively measured by using the digital power meter. As the results in Fig. 8, the actual efficiency of the soft switching is higher than that of hard switching for the required output power range. Especially, for 3kW breadboard setup, the actual conversion efficiency of soft-switching PWM scheme achieves up to 97.8%. And moreover, for high frequency switching, this power circuit can achieve higher efficiency characteristics.

3.4 EMI Testing of Radiated Emissions

The performance of radiated emission measured by EMC bilog antenna (30MHz~1GHz) in the shielded anechoic chamber shown in Fig. 9. Observing from the results in Fig. 10, soft switching has the lower noise level compare to the hard switching for all over the frequency range. Especially, the noise level for the maximum 37.1 [dB μ V/m] can be reduced at 230MHz. It is more effective to use the boost type ZVS-PWM chopper-fed DC-DC power converter with active auxiliary resonant snubber to suppress the radiated emission.

3.5 EMI Testing of Conducted Emissions

The measuring result of conducted emission is measured with using the line impedance stabilization network (LISN) shown in Fig. 11[9],[10]. According to the results shown in Fig. 12, soft switching is lower noise level compare to the hard switching all over the frequency range except for around 1.8MHz, 2.7MHz and 5.5MHz. Especially over 6MHz, soft switching can be excellent performance compared with hard switching. It is effective to use a soft-switching PWM scheme with active auxiliary resonant snubber to suppress the conducted emission.

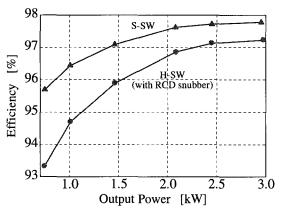


Fig. 8 Output power vs. actual efficiency characteristics

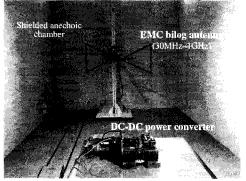


Fig. 9 Facility for measuring radiated emission

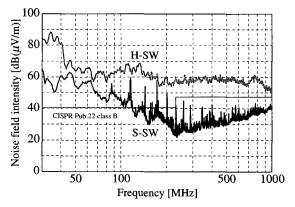


Fig. 10 Noise measurement of radiated EMI

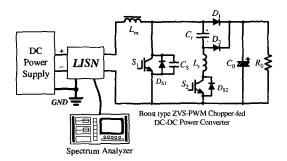


Fig. 11 Measurement of conducted emission

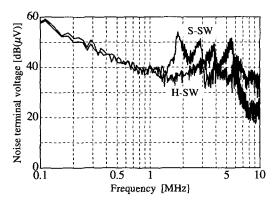


Fig. 12 Noise measurement of conducted EMI

4. Parasitic Oscillation of Auxiliary Power Switch at ZCS Turn-off

4.1 Generation of Parasitic Oscillation

Fig. 13 depicts a parasitic oscillation phenomenon at the voltage across the auxiliary power switch S_2 and its current waveforms at ZCS turn-off. This means that the quality factor of edge resonant circuit is high, and the element of dissipation is substantially small. The peak surge voltage across the auxiliary power switch S_2 becomes about 900V, so the power semiconductor device protection of the auxiliary power switch from a surge voltage is a significant problem.

Before the auxiliary power switch S_2 is turned off, the resonant current flowing through S_2 has naturally commutate to the antiparallel diode D_{S2} . During this interval, the gate voltage pulse signal of the auxiliary power switch S_2 has to be turned off. Presently, the resonant current flowing through the antiparallel diode D_{S2} becomes zero if the diode D_{S2} is ideal. But in fact, the resonant current is not suppressed, and the reverse recovery current flowing through D_{S2} appears when changes from forward-directional bias to the reverse-directional bias.

The recombination and diffusion of the minority carrier is to be generated when the current direction changed into the reverse direction from the forward direction. Due to the rapid direction change of current with a higher di/dt, a resonant inductor L_r connected to the auxiliary power switch S_2 in series induces a large voltage from the steep di/dt. So the voltage across the auxiliary power switch S_2 induces a large voltage, too. The voltage and current waveforms of the resonant inductor L_{τ} at this time are shown in Fig. 14. The energy stored into that resonant inductor decreases with continuing resonant oscillation between the resonant inductor and the resultant parasitic capacitance including diffusion capacitance and junction capacitance of the antiparallel diode D_{S2} in addition to the capacitance C_{CE} (see Fig. 15). Observing this oscillation frequency by using the synchroscope, the frequency is about 2.7MHz. As compared with the results of synchroscope and the results of conducted emission shown in Fig. 12, it is proved that the fundamental frequency (about 2.7MHz) and the twice of frequency (about 5.4MHz) appear as a spectrum due to this oscillation.

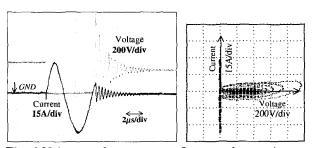


Fig. 3 Voltage and current waveforms and v-i trajectory of auxiliary switch S_2

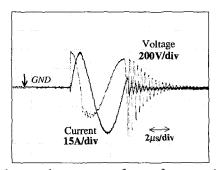


Fig. 14 Voltage and current waveforms of resonant inductor

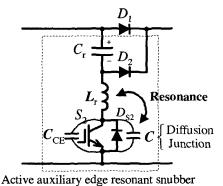
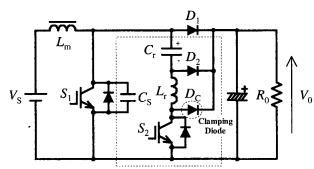



Fig. 15 Parasitic oscillation principle

4.2 Suppression Method of Parasitic Oscillation

As for suppressing the parasitic oscillation, the clamping diode loop in the boost type ZVS-PWM chopper-fed DC-DC power converter is added as illustrated in Fig. 16. This clamping diode with lossless snubber is naturally turned on when the voltage across the auxiliary power switch S_2 is higher than a voltage of the output DC port. Therefore, with using clamping diode loop can suppress the peak voltage across the auxiliary power switch S_2 less than the output voltage. And this snubber energy is used effectively at the output side, so that lossless snubber can be implemented.

Active auxiliary edge resonant snubber

Fig. 16 Boost type ZVS-PWM chopper-fed DC-DC Power converter with an additional clamping diode D_C

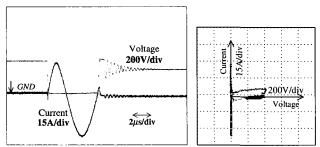


Fig. 17 Voltage and current waveforms and v-i trajectory of auxiliary switch S_2 with a clamping diode

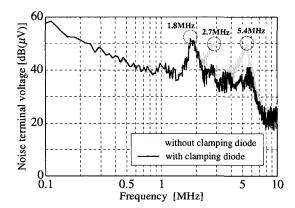


Fig. 18 Comparative noise measurement of conducted EMI with a clamping diode and without clamping diode

The voltage and current operating waveforms of the auxiliary power switch S_2 in case of adding a clamping diode are represented in Fig. 17. As shown in Fig. 17, a large oscillation in Fig. 13 disappears, and the surge voltage is effectively suppressed. Therefore, the over voltage across the auxiliary power switch S_2 can be reduced positively. Fig. 18 illustrates the measured result of conducted emission in case of using the clamping diode loop. According to Fig. 18, the noise level can reduce $5dB\mu V \sim 10dB\mu V$ around 2.7MHz and 5.5MHz, therefore, excellent results are obtained for the suppression of the conducted emission.

5. Conclusion

In this paper, boost type ZVS-PWM chopper-fed DC-DC power converter with a load side single active auxiliary resonant snubber has introduced for the power interface of the solar photovoltaic or fuel cell power conditioner. The feasible characteristics of this boost type ZVS-PWM chopper-fed DC-DC power converter using IGBTs is compared with the conventional hard switching PWM one on the basis of the voltage and current waveforms, switching v-i trajectory, measured temperature of IGBT module package, actual power conversion efficiency, and EMI test data. In addition to these, this paper also discussed the problem of ZCS turn-off of the auxiliary active power switch, and suggested to reduce the unnecessary parasitic oscillation with using lossless clamping diode loop. In terms of the measured voltage and current operating waveforms and EMI conducted emission, the diode clamping diode loop to suppress this high-frequency parasitic oscillation is suggested and presented herein.

Acknowledgements

This research was supported by the Young Scholar Project (YSP) of the Venture Business Laboratory (VBL), Yamaguchi University, Japan.

References

- [1] G. Hua, C.S. Leu, Y. Jiang and F.C. Lee, "Novel Zero-Voltage-Transition PWM Converters", *IEEE Trans. Power Electronics*, Vol. 9, No. 2, pp. 213-219, March 1994.
- [2] X. Yang and Z. Wang, "A Family of New Zero-Voltage-Transition PWM Converter with Zero-Current Turn off Auxiliary Switch", *Proceedings of ICPE*, Seoul, pp. 74-78, October 1998.
- [3] K.S. Park and Y.H. Kim, "New High Efficiency Zero-

- Voltage-Switching AC-DC Boost Converter Using Coupled Inductor and Energy Recovery Circuit", *Trans. KIEE*, Vol. 50B, No. 10, pp. 501-507, Oct. 2001.
- [4] R. Gurunathan and A.K.S. Bhat, "Large-Signal Analysis and Simulation of a ZVT Boost Converter", Proceedings of IEEE-PEDS, Indonesia, pp. 425-431, Nov. 2001.
- [5] K.M. Smith and K.M. Smedley, "A Comparison of Voltage-Mode Soft-Switching Methods for PWM Converter", *IEEE Trans. Power Electronics*, Vol. 12, No. 2, pp. 376-386, March 1997.
- [6] H.S. Choi and B.H. Cho, "Novel Zero-Current-Switching (ZCS) PWM Switch Cell Minimizing Additional Conduction Loss", KIEE International Trans. Electrical Machinery and Energy Conversion Systems, Vol. 12B, No. 1, pp. 37-43, March 2002.
- [7] T.F. Wu and S.A. Liang, "Systematic Approach to Developing Single-Stage Soft Switching PWM Converters", *IEEE Trans. Power Electronics*, Vol. 16, No. 5, pp. 581-593, Sept. 2001.
- [8] K.M. Smith and K.M. Smedley, "Engineering Design of Lossless Passive Soft Switching Methods for PWM Converters-Part I", *IEEE Trans. Power Electronics*, Vol. 16, No. 3, pp. 336-344, May 2001.
- [9] Y. Tang, H. Zhu, B. Song, J.S. Lai and C. Chen, "EMI Experimental Comparison of PWM Inverters Between Hard- and Soft-Switching Techniques", *Pro*ceedings of VPEC Seminar, Virginia Tech., pp. 247-253, Sept. 1998.
- [10] D. Zhang, D.Y. Chen and F.C. Lee, "An Experimental Comparison of Conducted EMI Emissions between a Zero-Voltage Transition Circuit and a Hard Switching Circuit", *IEEE-PESC Conf. Record*, Italy, Vol. 2, pp. 1992-1997, June 1996.

Koki Ogura

He was born in Shimane, Japan. He received his B. Eng. and M. Eng. degrees in Electrical and Electronics Eng. from Yamaguchi University, Yamaguchi, Japan in 2000 and 2002, respectively. He is currently doing research in Dept. of Electrical System Engineer-

ing, the Graduate School of Science and Engineering, Yamaguchi University, Japan towards his Ph. D. degree. His research interests include the development of high frequency soft-switched resonant power conversion circuits and systems applied to new energy system such as photovoltaic generation system. He is a student member of IEEE, the Institute of Electrical Engineers of Japan, the Institute of Electronics, Information and Communication Engineers, the Japan Society for Power Electronics and the Japan Solar Energy Society.

Srawouth Chandhaket

He was born in Surin, Thailand. He received his B. Eng. degree in Electronics from Kobe University, Hyogo, Japan in 1995 and also his M. S. degree in Electrical Engineering from Virginia Tech. in 1998. He is currently a Ph. D. candidate in the

Graduate School of Engineering and Science, Yamaguchi University, Yamaguchi, Japan since 2001. His research interests include the soft-switching technology in power electronics and power systems, the stability of power system network and the applications of soft computing in power electronics and power systems. He is a student member of IEEE, the Institute of Electrical Engineers of Japan and the Japan Solar Energy Society.

Tarek Ahmed

He received his M. S. degree from the Dept. of Electrical Engineering, Assiut University, Egypt in 1998. He is currently a Ph. D. candidate student in the Graduate School of Science and Engineering, the Power Electronic System and Control Engineering Laboratory at Yamaguchi University, Yamaguchi, Ja-

pan. His research interests are in the area of the new applications for the power electronic circuits and systems with the renewable energy and power systems and semiconductor power conditioners. Mr. Ahmed is a student-member of IEEE, and the Japan Society for Power Electronics.

Mutsuo Nakaoka

He was born in Hiroshima, Japan. He received his doctoral degree in Electrical Engineering from Osaka University, Osaka, Japan in 1981. He joined in the Dept. of Electrical and Electronics Engineering, Kobe University, Hyogo, Japan in 1981. Since 1995, he has been a professor in

the Dept. of Electrical and Electronics Engineering, the Graduate School of Engineering and Science, Yamaguchi University, Yamaguchi, Japan. His research interests include circuit and control systems of power electronics, especially in soft-switching areas. Dr. Nakaoka is a member of the Institute of Electrical Engineers of Japan, the Institute of Electronics, Information and Communication Engineers of Japan, the Institute of Illumination Engineering of Japan and a senior member of IEEE.