• Title/Summary/Keyword: Z-recurrent manifolds

Search Result 5, Processing Time 0.017 seconds

SASAKIAN 3-MANIFOLDS SATISFYING SOME CURVATURE CONDITIONS ASSOCIATED TO Ƶ-TENSOR

  • Dey, Dibakar;Majhi, Pradip
    • The Pure and Applied Mathematics
    • /
    • v.28 no.2
    • /
    • pp.143-153
    • /
    • 2021
  • In this paper, we study some curvature properties of Sasakian 3-manifolds associated to Ƶ-tensor. It is proved that if a Sasakian 3-manifold (M, g) satisfies one of the conditions (1) the Ƶ-tensor is of Codazzi type, (2) M is Ƶ-semisymmetric, (3) M satisfies Q(Ƶ, R) = 0, (4) M is projectively Ƶ-semisymmetric, (5) M is Ƶ-recurrent, then (M, g) is of constant curvature 1. Several consequences are drawn from these results.

𝒵 Tensor on N(k)-Quasi-Einstein Manifolds

  • Mallick, Sahanous;De, Uday Chand
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.979-991
    • /
    • 2016
  • The object of the present paper is to study N(k)-quasi-Einstein manifolds. We study an N(k)-quasi-Einstein manifold satisfying the curvature conditions $R({\xi},X){\cdot}Z=0$, $Z(X,{\xi}){\cdot}R=0$, and $P({\xi},X){\cdot}Z=0$, where R, P and Z denote the Riemannian curvature tensor, the projective curvature tensor and Z tensor respectively. Next we prove that the curvature condition $C{\cdot}Z=0$ holds in an N(k)-quasi-Einstein manifold, where C is the conformal curvature tensor. We also study Z-recurrent N(k)-quasi-Einstein manifolds. Finally, we construct an example of an N(k)-quasi-Einstein manifold and mention some physical examples.

On Generalized 𝜙-recurrent Kenmotsu Manifolds with respect to Quarter-symmetric Metric Connection

  • Hui, Shyamal Kumar;Lemence, Richard Santiago
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.2
    • /
    • pp.347-359
    • /
    • 2018
  • A Kenmotsu manifold $M^n({\phi},\;{\xi},\;{\eta},\;g)$, (n = 2m + 1 > 3) is called a generalized ${\phi}-recurrent$ if its curvature tensor R satisfies $${\phi}^2(({\nabla}_wR)(X,Y)Z)=A(W)R(X,Y)Z+B(W)G(X,Y)Z$$ for all $X,\;Y,\;Z,\;W{\in}{\chi}(M)$, where ${\nabla}$ denotes the operator of covariant differentiation with respect to the metric g, i.e. ${\nabla}$ is the Riemannian connection, A, B are non-vanishing 1-forms and G is given by G(X, Y)Z = g(Y, Z)X - g(X, Z)Y. In particular, if A = 0 = B then the manifold is called a ${\phi}-symmetric$. Now, a Kenmotsu manifold $M^n({\phi},\;{\xi},\;{\eta},\;g)$, (n = 2m + 1 > 3) is said to be generalized ${\phi}-Ricci$ recurrent if it satisfies $${\phi}^2(({\nabla}_wQ)(Y))=A(X)QY+B(X)Y$$ for any vector field $X,\;Y{\in}{\chi}(M)$, where Q is the Ricci operator, i.e., g(QX, Y) = S(X, Y) for all X, Y. In this paper, we study generalized ${\phi}-recurrent$ and generalized ${\phi}-Ricci$ recurrent Kenmotsu manifolds with respect to quarter-symmetric metric connection and obtain a necessary and sufficient condition of a generalized ${\phi}-recurrent$ Kenmotsu manifold with respect to quarter symmetric metric connection to be generalized Ricci recurrent Kenmotsu manifold with respect to quarter symmetric metric connection.