Acknowledgement
The authors would like to thank the anonymous referee for his/her valuable comments.
References
- A. Besse: Einstein manifolds. Springer-Verlag, New York, 2008.
- D.E. Blair: Contact manifold in Riemannian Geometry. Lecture Notes on Mathematics. Springer, Berlin 509 (1976).
- D.E. Blair: Riemannian Geometry on contact and symplectic manifolds. Progr. Math., Birkhauser, Boston 203 (2010).
- U.C. De & D. Dey: Pseudo-symmetric structures on almost Kenmotsu manifolds with nullity distributions. Acta Comment. Univ. Tartu. Math 23 (2019), 13-24.
- D. Dey & P. Majhi: Some type of semisymmetry on two classes of almost Kenmotsu manifolds. Accepted for publication in "Communications in Mathematics".
- J.B. Jun & U.K. Kim: On 3-dimensional almost contact metric manifolds. Kyungpook Math. J. 34 (1994), 293-301.
- S. Mallick & U.C. De: Ƶ-tensor on N(k)-quasi-Einstein manifolds. Kyungpook Math. J. 56 (2016), 979-991. https://doi.org/10.5666/KMJ.2016.56.3.979
- C.A. Mantica & L.G. Molinari: Weakly Ƶ-symmetric manifolds. Acta Math. Hungar. 135 (2012), 80-96. https://doi.org/10.1007/s10474-011-0166-3
- C.A. Mantica & Y.J. Suh: Pseudo Ƶ-symmetric Riemannian manifolds with harmonic curvature tensors. Int. J. Geom. Methods Mod. Phys. 9 (2012), 1250004. https://doi.org/10.1142/S0219887812500041
- C.A. Mantica & Y.J. Suh: Recurrent Ƶ forms on Riemannian and Kaehler manifolds. Int. J. Geom. Methods Mod. Phys. 9 (2012), 1250059. https://doi.org/10.1142/S0219887812500594
- R. Sharma: Certain results on K-contact and (k, µ)-contact manifolds. J. Geom. 89 (2008), 138-147. https://doi.org/10.1007/s00022-008-2004-5
- L. Verstraelen: Comments on pseudosymmetry in the sense of Ryszard Deszcz, In: Geometry and topology of submanifolds, VI. River Edge, NJ: World Sci. Publishing 6 (1994), 199-209.