1 |
U.C. De & D. Dey: Pseudo-symmetric structures on almost Kenmotsu manifolds with nullity distributions. Acta Comment. Univ. Tartu. Math 23 (2019), 13-24.
|
2 |
A. Besse: Einstein manifolds. Springer-Verlag, New York, 2008.
|
3 |
D.E. Blair: Riemannian Geometry on contact and symplectic manifolds. Progr. Math., Birkhauser, Boston 203 (2010).
|
4 |
D. Dey & P. Majhi: Some type of semisymmetry on two classes of almost Kenmotsu manifolds. Accepted for publication in "Communications in Mathematics".
|
5 |
C.A. Mantica & Y.J. Suh: Pseudo Ƶ-symmetric Riemannian manifolds with harmonic curvature tensors. Int. J. Geom. Methods Mod. Phys. 9 (2012), 1250004.
DOI
|
6 |
C.A. Mantica & Y.J. Suh: Recurrent Ƶ forms on Riemannian and Kaehler manifolds. Int. J. Geom. Methods Mod. Phys. 9 (2012), 1250059.
DOI
|
7 |
R. Sharma: Certain results on K-contact and (k, µ)-contact manifolds. J. Geom. 89 (2008), 138-147.
DOI
|
8 |
D.E. Blair: Contact manifold in Riemannian Geometry. Lecture Notes on Mathematics. Springer, Berlin 509 (1976).
|
9 |
S. Mallick & U.C. De: Ƶ-tensor on N(k)-quasi-Einstein manifolds. Kyungpook Math. J. 56 (2016), 979-991.
DOI
|
10 |
C.A. Mantica & L.G. Molinari: Weakly Ƶ-symmetric manifolds. Acta Math. Hungar. 135 (2012), 80-96.
DOI
|
11 |
L. Verstraelen: Comments on pseudosymmetry in the sense of Ryszard Deszcz, In: Geometry and topology of submanifolds, VI. River Edge, NJ: World Sci. Publishing 6 (1994), 199-209.
|
12 |
J.B. Jun & U.K. Kim: On 3-dimensional almost contact metric manifolds. Kyungpook Math. J. 34 (1994), 293-301.
|