• Title/Summary/Keyword: Young's Modulus Ratio

Search Result 220, Processing Time 0.024 seconds

Vibration Analysis of Rotating Inward Cantilever Beams With a Tip-Mass (집중질량을 갖는 회전중심방향 자유단 외팔보의 진동해석)

  • Lee, Gun Ho;Yoo, Hong Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.389-391
    • /
    • 2014
  • The Vibration Analysis of Rotating Inward Beams Considering The Tip-Mass is presented based on Euler-Bernoulli beam theory. The frequency equations, which are coupled through gyroscopic coupling terms, are calculated using hybrid deformation variable modeling along with the Rayleigh-Ritz assumed mode methods. In this study, resulting system of ordinary differential equations shows the effects of angular speed, and Young's modulus ratio. It is believed that the results will be a reference with which other researchers and commercial FE analysis program, ANSYS can compare their results.

  • PDF

Characteristics of polycrystalline 3C-SiC micro resonator (다결정 3C-SiC 마이크로 공진기의 특성)

  • Lee, Tae-Won;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.69-70
    • /
    • 2008
  • Micro resonators have been actively investigated for bio/chemical sensors and RF M/NEMS devices. Among various materials, SiC is a very promising material for micro/nano resonators since the ratio of its Young's modulus, E, to mass density, $\rho$, is significantly higher than other semiconductor materials, such as, Si and GaAs. Polycrystalline 3C-SiC cantilever with different lengths were fabricated using a surface micromachining technique. Polycrystalline 3C-SiC micro resonators were actuated by piezoelectric element and its fundamental resonance was measured by a laser vibrometer in air and vacuum at room temperature, respectively. For the cantilever with $100{\mu}m$ length, $10{\mu}m$width and $1.3{\mu}m$ thickness, the fundamental frequency appeared at 147.2 kHz.

  • PDF

Hertzian 이동하중을 받는 피복된 재료의 탄소성 거동에 관한 유한요소해석

  • 김영종;조용주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.596-602
    • /
    • 1995
  • In this paper, the rolling-sliding contact problem of a layered semi-infinite solid compressed by a rigid surface is solved by finite element method based on the elasto-plastic theory. The purpose of this paper is to present the standard that is needed the later design. For this analysis, the principal parameters are layer thickness. Young's modulus ratio of layer and substrate and friction coefficient. In particular, this paper is interested in effect that layer thickness have influence upon displacement and shear and tensile stress at interface. For the layered material, the layer and the substrate behave elastic and linear-strain hardening respectively. For law friction, a relatively thin layer reduce the undesired maximum tensial stress but, for high friction, act contrary to the case of low friction.

A Study for the Adaptation of Simulation of Uniaxial Compressive Strength Test for Concrete in 3-Dimensional Particle Bonded Model (3차원 입자 결합 모델에서 콘크리트의 일축압축실험 모사 적용성 연구)

  • Lee, Hee-Kwang;Jeon, Seok-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.147-156
    • /
    • 2008
  • In an uniaxial compressive test of a concrete standard specimen (150$\times$300 mm) the crack initiation and extension with the stress increase are the major reason of the failure, which is similar to the breakage of the particle bonding in the simulation by using particle bonded model, especially particle flow code in 3 dimensions (PFC3D) developed by Itasca Consulting Group Inc. That is the main motive to study the possibility of an uniaxial compressive strength test simulation. It is important to investigate the relationship between the micro-parameters and the macro-properties because the 3-dimensional particle bonded model uses the spherical particles to analyze the physical phenomena. Contact bonded model used herein has eight micro-parameters and there are five macro-properties; Young's modulus, Poisson's ratio, uniaxial compressive strength and the crack initiation stress and the ratio concerning the crack propagation with the stress. To simulate the compressive test we made quantitative relationships between the micro-parameters and the macro-properties by using the fractional factorial design and various sensitivity analyses including regression analysis, which result in the good agreement with the previous studies. Also, the stress-stain curve and the crack distribution over the specimen given by PFC3D showed the mechanical behavior of the concrete standard specimen under the uniaxial compression. It is concluded that the particle bonded model can be a good tool for the analyzing the mechanical behavior of concrete under the uniaxial compressive load.

A Study on Mechanical Properties of Porous Concrete Using Cementless Binder

  • Lee, Jong-Won;Jang, Young-Il;Park, Wan-Shin;Kim, Sun-Woo
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.4
    • /
    • pp.527-537
    • /
    • 2016
  • This study evaluated the mechanical characteristics and durability of porous concrete produced with a cementless binder based on ground granulated blast furnace slag (BFS), fly ash (FA) and flue gas desulfurization gypsum (CP). As a result, the void ratio was increased slightly from the target void ratio, by 1.12-1.42 %. Through evaluating the compressive strength, it was found that the compressive strength of porous concrete with cementless binder decreased in comparison to the compressive strength of porous concrete with ordinary Portland cement (OPC), but the difference was insignificant, at 0.6-1.4 MPa. Through the freeze-thawing test to evaluate the durability, it was found that the relative dynamic elastic modulus of porous concrete with cementless binder decreased to 60 % or less at 80 cycles. The result of the chemical resistance test showed that the mass reduction rate was 12.3 % at 5 % HCl solution, and 12.7 % at 12.3 and 5 % $H_2SO_4$ solutions.

Dynamic Deformation Characteristics of Granite Weathered Soils Using RC/TS Tests (공진주/비틂전단시험을 이용한 화강풍화지반의 동적변형특성)

  • Kim, Dong-Soo;Ko, Dong-Hee;Youn, Jun-Ung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.1
    • /
    • pp.35-46
    • /
    • 2004
  • In Korea, around one - third of the country is occupied by granite, and granite weathered soils are widely distributed. Most of the research on this soil has been performed using reconstituted specimens because of the extreme difficulty of undisturbed sampling due to the sensitive particle structures. Therefore, the comparisons of deformational characteristics, which is expressed in terms of shear and Young's moduli and damping ratio, obtained from the undisturbed and reconstituted specimens are important for the reliable understanding of soil behavior. In this study, the resonant column and torsional shear tests were performed on granite weathered soils in Korea, and the deformation characteristics of undisturbed and reconstituted soil on granite weathered soils were evaluated and compared.

  • PDF

Acoustic emission characteristics under the influence of different stages of damage in granite specimens

  • Jong-Won Lee;Tae-Min Oh;Hyunwoo Kim;Min-Jun Kim;Ki-Il Song
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.149-166
    • /
    • 2024
  • The acoustic emission (AE) technique is utilized to estimate the rock failure status in underground spaces. Understanding the AE characteristics under loading conditions is essential to ensure the reliability of AE monitoring. The AE characteristics depend on the material properties (p-wave velocity, density, UCS, and Young's modulus) and damage stages (stress ratio) of the target rock mass. In this study, two groups of granite specimens (based on the p-wave velocity regime) were prepared to explore the effect of material properties on AE characteristics. Uniaxial compressive loading tests with an AE measurement system were performed to investigate the effect of the rock properties using AE indices (count index, energy index, and amplitude index). The test results were analyzed according to three damage stages classified by the stress ratio of the specimens. Count index was determined to be the most suitable AE index for evaluating rock mass stability.

Free vibration analysis of a laminated trapezoidal plate with GrF-PMC core and wavy CNT-reinforced face sheets

  • Yingqun Zhang;Qian Zhao;Qi Han;N. Bohlooli
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.275-291
    • /
    • 2023
  • This paper has focused on presenting vibration analysis of trapezoidal sandwich plates with 3D-graphene foam reinforced polymer matrix composites (GrF-PMC) core and FG wavy CNT-reinforced face sheets. The porous graphene foam possessing 3D scaffold structures has been introduced into polymers for enhancing the overall stiffness of the composite structure. Also, 3D graphene foams can distribute uniformly or non-uniformly in the plate thickness direction. The effective Young's modulus, mass density and Poisson's ratio are predicted by the rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. The First-order shear deformation theory of plate is utilized to establish governing partial differential equations and boundary conditions for trapezoidal plate. The governing equations together with related boundary conditions are discretized using a mapping-generalized differential quadrature (GDQ) method in spatial domain. Then natural frequencies of the trapezoidal sandwich plates are obtained using GDQ method. Validity of the current study is evaluated by comparing its numerical results with those available in the literature. It is explicated that 3D-GrF skeleton type and weight fraction, carbon nanotubes (CNTs) waviness and CNT aspect ratio can significantly affect the vibrational behavior of the sandwich structure. The plate's normalized natural frequency decreased and the straight carbon nanotube (w=0) reached the highest frequency by increasing the values of the waviness index (w).

The finite element method for dynamics of FG porous truncated conical panels reinforced with graphene platelets based on the 3-D elasticity

  • Lingqin Xia;Ruiquan Wang;Guang Chen;Kamran Asemi;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.14 no.4
    • /
    • pp.375-389
    • /
    • 2023
  • In this study, free vibration analysis of functionally graded (FG) porous truncated conical shell panels reinforced by graphene platelets (GPLs) has been investigated for the first time. Additionally, the effect of three different types of porosity distribution and five different types of GPLs patterns on dynamic response of the shell are also studied. Halpin-Tsai micromechanical model and Voigt's rule are used to determine Young modulus, shear modulus and Poisson's ratio with mass densities of the shell, respectively. The main novelties of present study are: applying 3D elasticity theory and the finite element method in conjunction with Rayleigh-Ritz method to give more accurate results unlike other simplified shell theories, and also presenting a general 3D solution in cylindrical coordinate system that can be used for analyses of different structures such as circular, annular and annular sector plates, cylindrical shells and panels, and conical shells and panels. A convergence study is performed to justify the correctness of the obtained solution and numerical results. The impact of porosity and GPLs patterns, the volume of voids, the weight fraction of graphene nanofillers, semi vertex and span angles of the cone, and various boundary conditions on natural frequencies of the functionally graded panel have been comprehensively studied and discussed. The results show that the most important parameter on dynamic response of FG porous truncated conical panel is the weight fraction of nanofiller and adding 1% weight fraction of nanofiller could increase 57% approximately the amounts of natural frequencies of the shell. Moreover, the porosity distribution has great effect on the value of natural frequency of structure rather than the porosity coefficient.

Size-dependent dynamic stability of a FG polymer microbeam reinforced by graphene oxides

  • Wang, Yuewu;Xie, Ke;Fu, Tairan
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.685-698
    • /
    • 2020
  • The dynamic stability of a functionally graded polymer microbeam reinforced by graphene oxides subjected to a periodic axial force is investigated. The microbeam is assumed to rest on an elastic substrate and is subjected to various immovable boundary restraints. The weight fraction of graphene oxides nanofillers is graded across the beam thickness. The effective Young's modulus of the functionally graded graphene oxides reinforced composite (FG-GORC) was determined using modified Halpin-Tsai model, with the mixture rule used to evaluate the effective Poisson's ratio and the mass density. An improved third order shear deformation theory (TSDT) is used in conjunction with the Chebyshev polynomial-based Ritz method to derive the Mathieu-Hill equations for dynamic stability of the FG-GORC microbeam, in which the scale effect is taken into account based on modified couple stress theory. Then, the Mathieu-Hill equation was solved using Bolotin's method to predict the principle unstable regions of the FG-GORC microbeams. The numerical results show the effects of the small scale, the graphene oxides nanofillers as well as the elastic substrate on the dynamic stability behaviors of the FG-GORC microbeams.