References
- Bakharev, T. (2005). Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. Cement and Concrete Research, 35(6), 1224-1232. https://doi.org/10.1016/j.cemconres.2004.06.031
- Bakharev, T., Sanjayan, J. G., & Cheng, Y.-B. (2001). Resistance of alkali activated slag concrete to carbonation. Cement and Concrete Research, 31(9), 1277-1283. https://doi.org/10.1016/S0008-8846(01)00574-9
- Brough, A. R., & Atkinson, A. (2002). Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure. Cement and Concrete Research, 32(6), 865-879. https://doi.org/10.1016/S0008-8846(02)00717-2
- Criado, M., Fernandez-Jimenezb, A., & Palomob, A. (2010). Alkali activation of fly ash. Part III: Effect of curing conditions on reaction and its graphical description. Fuel, 89(11), 3185-3192. https://doi.org/10.1016/j.fuel.2010.03.051
- Fu, Y., Cai, L., & Wu, Y. (2011). Freeze-thaw cycle test and damage mechanics models of alkali-activated slag concrete. Construction and Building Materials, 25(7), 3144-3148. https://doi.org/10.1016/j.conbuildmat.2010.12.006
-
Gartner, E. (2004). Industrially interesting approaches to low-
$CO_2$ cements. Cement and Concrete Research, 34(9), 1489-1498. https://doi.org/10.1016/j.cemconres.2004.01.021 -
Gomez-Garcia, M. A., Dobrosz-Gomez, I., & Ibarra-Taquez, H. N. (2015). Interaction parameters and (solid + liquid) equilibria calculation for
$KCl-H_2O-HCl-C_2H_5OH,\K_2SO_4-H_2O-H_2SO_4$ and$K_2SO_4-H_2O-C_2H_5OH$ mixed solvent-electrolyte systems. The Journal of Chemical Thermodynamics, 91, 427-434. https://doi.org/10.1016/j.jct.2015.08.020 - Japan Concrete Institute, Research Committee Report for the Establishment of Design and Construction Method for Porous Concrete, JCI, 2003. (in Japanese)
- Juenger, M. C. G., Winnefeld, F., Provis, J. L., & Ideker, J. H. (2011). Advances in alternative cementitious binders. Cement and Concrete Research, 41(12), 1232-1243. https://doi.org/10.1016/j.cemconres.2010.11.012
- Kathirvel, P. (2016) Influence of recycled concrete aggregates on the flexural properties of reinforced alkali activated slag concrete. Construction and Building Materials, 102, Part 1, 51-58. https://doi.org/10.1016/j.conbuildmat.2015.10.148
- Kumar, S., Kumar, R., & Mehrotra, S. (2010). Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer. Journal of Materials Science, 45(3), 607-615. https://doi.org/10.1007/s10853-009-3934-5
- Lee, B. J., Park, S. B., Kim, Y. Y., & Jang, Y. I. (2012). Experimental study on engineering performance evaluation and field. Journal of the Korea Concrete Institute, 24(2), 165-172 (in Korean). https://doi.org/10.4334/JKCI.2012.24.2.165
- Malhotra, V. M. (2002). Introduction: sustainable development and concrete technology. Concrete International, 24(7), 22.
- Mehta, P. K. (2001). Reducing the environmental impact of concrete. Concrete International, 23(10), 61-66.
- Oh, T. K. (2005). A review on the EIA system of each country and its implication. Journal of the Korea Contents Association, 5(4), 62-70 (in Korean).
-
Oh, J. E., Jun, Y. B., Jeong, Y. N., & Jeon, D. H. (2015). Microstructural and strength improvements through the use of
$Na_2CO_3$ in a cementless$Ca(OH)_2$ -activated Class F fly ash system. Cement and Concrete Research, 67, 215-225. https://doi.org/10.1016/j.cemconres.2014.10.001 - Pacheco-Torgal, F. (1991). Alkali activated ground granulated blast-furnace slag concrete: preliminary investigation. Cement and Concrete Research, 21(1), 101-108. https://doi.org/10.1016/0008-8846(91)90036-H
- Park, C. W., & Park, S. K. (2005). Eco-friendly of concrete. Journal of the Korea Concrete Institute, 20(6), 24-26 (in Korean).
- Park, S. G., Kwon, S. J., Kim, Y. M., & Lee, S. S. (2013). Reaction properties of non-cement mortar using ground granulated blast furnace slag. Journal of the Korea Contents Association, 13(4), 392-399 (in Korean).
- Puertas, F., & Fernandez-Jimenez, A. (2003). Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes. Cement & Concrete Composites, 25(3), 287-292. https://doi.org/10.1016/S0958-9465(02)00059-8
- Wu, S. K., Park, S. J., Kim, M. J., & Son, K. M. (2013) Evaluation and management methodology development for greenhouse gas mitigation measures. Technical report no. 2013-10, The Korea Transport Institute, Ilsan, Korea (in Korean).
- Yang, K. H., Hwang, H. Z., Kim, S. Y., & Song, J. K. (2007). Development of a cementless mortar using hwangtoh binder. Building and Environments, 42(10), 3717-3725. https://doi.org/10.1016/j.buildenv.2006.09.006
Cited by
- INVESTIGATION ON THE MECHANICAL PROPERTIES OF RUBBERIZED STEEL FIBER CONCRETE vol.9, pp.2, 2016, https://doi.org/10.3846/2029882x.2017.1309301
- Mechanical and Hydraulic Behaviors of Eco-Friendly Pervious Concrete Incorporating Fly Ash and Blast Furnace Slag vol.8, pp.6, 2016, https://doi.org/10.3390/app8060859
- Effects of Aging on the Tensile Properties of Polyethylene Fiber-Reinforced Alkali-Activated Slag-Based Composite vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/7573635
- Experimental Study on Mechanical Strength of Porous Concrete Pavement Containing Pozzolans vol.9, pp.1, 2016, https://doi.org/10.1520/acem20180111
- Geopolymer pervious concrete modified with granulated blast furnace slag: Microscale characterization and mechanical strength vol.328, pp.None, 2016, https://doi.org/10.1016/j.jclepro.2021.129469