Browse > Article
http://dx.doi.org/10.12989/sem.2020.73.6.685

Size-dependent dynamic stability of a FG polymer microbeam reinforced by graphene oxides  

Wang, Yuewu (Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University)
Xie, Ke (Institute of Systems Engineering, China Academy of Engineering Physics)
Fu, Tairan (Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University)
Publication Information
Structural Engineering and Mechanics / v.73, no.6, 2020 , pp. 685-698 More about this Journal
Abstract
The dynamic stability of a functionally graded polymer microbeam reinforced by graphene oxides subjected to a periodic axial force is investigated. The microbeam is assumed to rest on an elastic substrate and is subjected to various immovable boundary restraints. The weight fraction of graphene oxides nanofillers is graded across the beam thickness. The effective Young's modulus of the functionally graded graphene oxides reinforced composite (FG-GORC) was determined using modified Halpin-Tsai model, with the mixture rule used to evaluate the effective Poisson's ratio and the mass density. An improved third order shear deformation theory (TSDT) is used in conjunction with the Chebyshev polynomial-based Ritz method to derive the Mathieu-Hill equations for dynamic stability of the FG-GORC microbeam, in which the scale effect is taken into account based on modified couple stress theory. Then, the Mathieu-Hill equation was solved using Bolotin's method to predict the principle unstable regions of the FG-GORC microbeams. The numerical results show the effects of the small scale, the graphene oxides nanofillers as well as the elastic substrate on the dynamic stability behaviors of the FG-GORC microbeams.
Keywords
functionally graded microbeam; graphene oxide reinforced composites; dynamic stabilities; third order shear deformation theory; Chebyshev-Ritz method;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Ke, L.L., Yang, J. and Kitipornchai, S. (2013), "Dynamic stability of functionally graded carbon nanotube-reinforced composite beams", Mech. Adv. Mater. Struct., 20(1), 28-37. https://doi.org/10.1080/15376494.2011.581412.   DOI
2 Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids. 51, 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.   DOI
3 Liang, K., Sun, Q. and Liu, X.R. (2018), "Investigation on imperfection sensitivity of composite cylindrical shells using the nonlinearity reduction technique and the polynomial chaos method", Acta Astronaut, 146, 349-358. https://doi.org/10.1016/j.actaastro.2018.03.018.   DOI
4 Li, C., Thostenson, E.T. and Chou, T.W. (2008), "Sensors and actuators based on carbon nanotubes and their composites: A review", Compos. Sci. Technol., 68(6), 1227-1249. https://doi.org/10.1016/j.compscitech.2008.01.006.   DOI
5 Li, X., Bhushan, B., Takashima, K., Baek, C.W. and Kim, Y.K.. (2003), "Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques", Ultramicroscopy, 97(1), 481-494. https://doi.org/10.1016/S0304-3991(03)00077-9.   DOI
6 Mao, J.J. and Zhang, W. (2019), "Buckling and post-buckling analyses of functionally graded graphene reinforced piezoelectric plate subjected to electric potential and axial forces", Compos. Struct., 216(5), 392-405. https://doi.org/10.1016/j.compstruct.2019.02.095.   DOI
7 Mahkam, M., Rafi, A.A., Faraji, L. and Zakerzadeh, E. (2015), "Preparation of poly (methacrylic acid)-graphene oxide nanocomposite as a pH-Sensitive drug carrier through in-situ copolymerization of methacrylic acid with polymerizable graphene", Polymer-Plastics Technology and Engineering, 54(9), 916-922. https://doi.org/10.1080/03602559.2014.961081.   DOI
8 Ashrafi, B., Hubert, P. and Vengallatore S. (2006), "Carbon nanotube-reinforced composites as structural materials for microactuators in microelectromechanical systems", Nanotechnology, 17(19), 4895. https://doi.org/10.1088/0957-4484/17/19/019.   DOI
9 Arani, A.G. and Kiani, F. (2018), "Nonlinear free and forced vibration analysis of microbeams resting on the nonlinear orthotropic visco-Pasternak foundation with different boundary conditions", Steel Compos. Struct., 28(2), 149-165. http://dx.doi.org/10.12989/scs.2018.28.2.149.   DOI
10 Arefi, M., Bidgoli, E.M.R., Dimitri, R. and Tornabene, F. (2018), "Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Aerosp. Sci. Technol., 81, 108-117. https://doi.org/10.1016/j.ast.2018.07.036.   DOI
11 Potts, R.J., Dreyer, R.D., Bielawski, W.C. and Ruoff, S.R. (2011), "Graphene-based polymer nanocomposites", Polymer, 52(1), 5-25. https://doi.org/10.1016/j.polymer.2010.11.042.   DOI
12 Mohammed, A. and Cagri, M. (2018), "Dynamic stability of sandwich functionally graded micro-beam based on the nonlocal strain gradient theory with thermal effect", Compos. Struct., 201, 1018-1030. https://doi.org/10.1016/j.compstruct.2018.06.035.   DOI
13 Mindlin, R.D. (1963), "Influence of couple-stresses on stress concentrations", Exp. Mech., 3, 1-7. https://doi.org/10.1007/BF02327219.   DOI
14 Park, S.K. and Gao, X.L. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng., 16, 2355-2359. https://doi.org/10.1088/0960-1317/16/11/015.   DOI
15 Ramaratnam, A. and Jalili, N. (2006), "Reinforcement of piezoelectric polymers with carbon nanotubes: pathway to next-generation sensors", J. Intel. Mat. Syst. Str., 17(3), 199-208. https://doi.org/10.1177/1045389X06055282.   DOI
16 Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells: Theory and Application, (2nd Edition), CRC Press, New York, Washington D.C., USA.
17 Rokni, H., Milani, A.S. and Seethaler, R.J. (2012a), "Improvement in dynamic properties of laminated MWCNT-polystyrene composite beams via an integrated numerical-experimental approach", Compos. Struct., 94(8), 2538-2547. https://doi.org/10.1016/j.compstruct.2012.03.028.   DOI
18 Chen, X. Lu, Y. and Li, Y. (2019), "Free vibration, buckling and dynamic stability of bi-directional FG microbeam with a variable length scale parameter embedded in elastic medium", Appl. Math. Model., 67, 430-448. https://doi.org/10.1016/j.apm.2018.11.004.   DOI
19 Bolotin, V.V. (1964), The Dynamic Stability of Elastic Systems, Holden-Day, San Francisco, CA, USA.
20 Chen, L. and Zhang, W.P. (2017), "Chebyshev polynomials and their some interesting applications", Adv. Differ. Equ. 2017, 303. https://doi.org/10.1186/s13662-017-1365-1.   DOI
21 Trinh, C.L., Vo, P.T., Thai, H.T. and Nguyen, T.K. (2018), "Size-dependent vibration of bi-directional functionally graded microbeams with arbitrary boundary conditions", Compos. Part B: Eng., 134, 225-245. https://doi.org/10.1016/j.compositesb.2017.09.054.   DOI
22 Rokni, H., Milani, A.S. and Seethaler, R.J. (2012b), "2D optimum distribution of carbon nanotubes to maximize fundamental natural frequency of polymer composite micro-beams", Compos. Part B: Eng., 43(2), 779-785. https://doi.org/10.1016/j.compositesb.2011.07.012.   DOI
23 Saemul, S. and Ganesan, R. (2018), "Dynamic instability of rotating doubly-tapered laminated composite beams under periodic rotational speeds", Compos. Struct., 200, 711-728. https://doi.org/10.1016/j.compstruct.2018.05.133.   DOI
24 Setoodeh, A. and Rezae, M. (2017), "Large amplitude free vibration analysis of functionally graded nano/micro beams on nonlinear elastic foundation", Struct. Eng. Mech., 61(2), 209-220. http://dx.doi.org/10.12989/sem.2017.61.2.209.   DOI
25 Shi, G. (2007), "A new simple third-order shear deformation theory of plates", Int. J. Solids Struct., 44(13), 4399-4417. https://doi.org/10.1016/j.ijsolstr.2006.11.031.   DOI
26 Song, M., Kitipornchai, S. and Yang, J. (2016), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Struct., 159, 579-588. https://doi.org/10.1016/j.compstruct.2016.09.070.   DOI
27 Van Es, M.A. (2001), "Polymer-clay nanocomposites: the importance of particle dimensions", Ph.D. Dissertation, Delft University of Technology, Delft, Netherlands.
28 Wang, A., Chen, H., Hao, Y. and Zhang, W. (2016), "Vibration and bending behavior of functionally graded nanocomposite doubly-curved shallow shells reinforced by graphene nanoplatelets", Results in Physics, 9, 550-559. https://doi.org/10.1016/j.rinp.2018.02.062.   DOI
29 Chong, A.C.M., Yang, F. and Lam, D.C.C. (2001), "Torsion and bending of micron-scaled structures", J. Mater. Res., 16, 1052-1058. https://doi.org/10.1557/JMR.2001.0146.   DOI
30 Chen,W.Q., Lu, C.F. and Bian, Z.G. (2004), "A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation", Appl. Math. Model., 28(10), 877-890. https://doi.org/10.1016/j.apm.2004.04.001.   DOI
31 Ebrahimi, F. and Barati, M.R. (2016a), "Small-scale effects on hygro-thermo-mechanical vibration of temperature-dependent nonhomogeneous nanoscale beams", Mech. Adv. Mater. Struct., 24(11), 924-936. https://doi.org/10.1080/15376494.2016.1196795.   DOI
32 Ebrahimi, F. and Barati, M.R. (2016b), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122, 451. https://doi.org/10.1007/s00339-016-0001-3.   DOI
33 Ebrahimi, F., Barati, M.R. and Haghi, P. (2017d), "Thermal effects on wave propagation characteristics of rotating strain gradient temperature-dependent functionally graded nanoscale beams", J. Therm. Stresses, 40(5), 535-547. https://doi.org/10.1080/01495739.2016.1230483.   DOI
34 Wang, Y., Xie, K., Fu, T. and Shi, C. (2019a), "Vibration response of a functionally graded graphene nanoplatelet reinforced composite beam under two successive moving masses", Compos. Struct., 209, 928-939. https://doi.org/10.1016/j.compstruct.2018.11.014.   DOI
35 Wang, Y., Xie, K., Shi, C. and Fu, T. (2019b), "Nonlinear bending of axially functionally graded microbeams reinforced by graphene nanoplatelets in thermal environments", Mater. Res. Express, 6, 085615. https://doi.org/10.1088/2053-1591/ab1eef.   DOI
36 Ebrahimi, F. and Barati, M.R. (2017a), "Vibration analysis of piezoelectrically actuated curved nanosize FG beams via a nonlocal strain-electric field gradient theory", Mech. Adv. Mater. Struct., 25(4), 350-359. https://doi.org/10.1080/15376494.2016.1255830.   DOI
37 Ebrahimi, F. and Barati, M.R. (2017b), "Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium", J. Brazilian Soc. Mech. Sci. Eng., 39(3), 937-952. https://doi.org/10.1007/s40430-016-0551-5.   DOI
38 Ebrahimi, F. and Barati, M.R. (2017c), "Through-the-length temperature distribution effects on thermal vibration analysis of nonlocal strain-gradient axially graded nanobeams subjected to nonuniform magnetic field", J. Therm. Stresses, 40(5), 548-563. https://doi.org/10.1080/01495739.2016.1254076.   DOI
39 Wattanasakulpong, N. and Bui, T.Q. (2018), "Vibration analysis of third-order shear deformable FGM beams with elastic support by Chebyshev collocation method", Int. J. Struct. Stability Dynam., 18(5), 1850071. https://doi.org/10.1142/S0219455418500712.   DOI
40 Wattanasakulpong, N., Gangadhara, B.P. and Donald, W.K. (2011), "Thermal buckling and elastic vibration of third-order shear deformable functionally graded beams", Int. J. Mech. Sci., 53(9), 734-743. https://doi.org/10.1016/j.ijmecsci.2011.06.005.   DOI
41 Weon, J.I. (2009), "Mechanical and thermal behavior of polyamide-6/clay nanocomposite using continuum-based micromechanical modeling", Macromol. Res., 17(10), 797-806. https://doi.org/10.1007/BF03218617.   DOI
42 Wu, H., Yang, J. and Kitipornchai, S. (2017), "Dynamic instability of functionally graded multilayer graphene nanocomposite beams in thermal environment", Compos. Structu., 162(15), 244-254. https://doi.org/10.1016/j.compstruct.2016.12.001.   DOI
43 Xin, J. Wang, J. and Yao, J. (2011), "Vibration, buckling and dynamic stability of a cracked cylindrical shell with time-varying rotating speed", Mech. Based. Des. Struct. Mach. Int. J., 39(4), 461-490. https://doi.org/10.1080/15397734.2011.569301.   DOI
44 Ebrahimi, F. and Dabbagh, A. (2017), "Nonlocal strain gradient based wave dispersion behavior of smart rotating magneto-electro-elastic nanoplates", Mater. Res. Express, 4(2), 025003. https://doi.org/10.1088/2053-1591/aa55b5.   DOI
45 Yang, S.Y., Lin, W.N., Huang, Y.L., Tien, H.W., Wang, J.Y., Ma, M.C.C, Li, S.M. and Wang Y.S. (2010), "Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites", Carbon, 49(3), 793-803. https://doi.org/10.1016/j.carbon.2010.10.014.   DOI
46 Zhang, Z., et al. (2018), "Mechanical analysis of functionally graded graphene oxide-reinforced composite beams based on the first-order shear deformation theory", Mech. Adv. Mater. Struct., (In press). https://doi.org/10.1080/15376494.2018.1444216.
47 Zhou, D., Lo, S.H., Au, F.T.K., Cheung, Y.K. and Liu, W.Q. (2006), "3-D vibration analysis of skew thick plates using Chebyshev-Ritz method", Int. J. Mech. Sci., 48(12), 1481-1493. https://doi.org/10.1016/j.ijmecsci.2006.06.015.   DOI
48 Ebrahimi, F. and Barati, M.R. (2017e), "Porosity-dependent vibration analysis of piezo-magnetically actuated heterogeneous nanobeams", Mech. Syst. Signal Pr., 93, 445-459. https://doi.org/10.1016/j.ymssp.2017.02.021.   DOI
49 Ebrahimi, F. and Barati, M.R. (2018a), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vib. Control, 24(3), 549-564. https://doi.org/10.1177/1077546316646239.   DOI
50 Ebrahimi, F. and Barati, M.R. (2018b), "Stability analysis of porous multi-phase nanocrystalline nonlocal beams based on a general higher-order couple-stress beam model", Struct. Eng. Mech., 65(4), 465-476. https://doi.org/10.12989/sem.2018.65.4.465.   DOI
51 Ebrahimi, F. and Salari, E. (2015a), "Size-dependent thermo-electrical buckling analysis of functionally graded piezoelectric nanobeams", Smart Mater. Struct., 24, 125007. https://doi.org/10.1088/0964-1726/24/12/125007.   DOI
52 Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2015b), "Thermomechanical vibration behavior of FG nanobeams subjected to linear and non-linear temperature distributions", J. Therm. Stresses, 38(12), 1360-1386. https://doi.org/10.1080/01495739.2015.1073980.   DOI
53 Ebrahimi, F. and Salari, E. (2015c), "A semi-analytical method for vibrational and buckling analysis of functionally graded nanobeams considering the physical neutral axis position", CMES: Computer Modeling in Engineering & Sciences, 105(2), 151-181. https://doi.org/10.3970/cmes.2015.105.151.
54 Ebrahimi, F., Ghasemi, F. and Salari, E. (2016), “Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities”. Meccanica, 51(1), 223-249. https://doi.org/10.1007/s11012-015-0208-y.   DOI
55 Graphene-info. (2019), Graphene Oxide: Introduction and Market News; Metalgrass LTD, Herzerlia, Israel, https://www.graphene-info.com/graphene-oxide, (accessed: 01-June-2019)
56 Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.   DOI
57 Ebrahimi, F. and Salari, E. (2016), "Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent functionally graded nanobeams", Mech. Adv. Mater. Struct., 23(12), 1379-1397. https://doi.org/10.1080/15376494.2015.1091524.   DOI
58 Ebrahimi, F. and Hosseini, S.H.S. (2016), "Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates", J. Therm. Stresses, 39(5), 606-625. https://doi.org/10.1080/01495739.2016.1160684.   DOI
59 Ebrahimi, F. and Mokhtari, M. (2015), "Transverse vibration analysis of rotating porous beam with functionally graded microstructure using the differential transform method", J. Brazilian Soc. Mech. Sci. Eng., 37(4), 1435-1444. https://doi.org/10.1007/s40430-014-0255-7.   DOI
60 Fox, L. and Parker, I.B. (1968), Chebyshev Polynomials in Numerical Analysis, Oxford University Press, London, UK.
61 Harris, B. (1986), Engineering Composite Materials, Institute of Metals, London, UK.
62 Javani, R., Bidgoli R.M. and Kolahchi R. (2019), "Buckling analysis of plates reinforced by Graphene platelet based on Halpin-Tsai and Reddy theories", Steel Compos. Struct., 31(4), 419-427. http://dx.doi.org/10.12989/scs.2019.31.4.419.   DOI
63 Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Int. J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036.   DOI
64 Ke, L.L., Yang, J., Kitipornchai, S. and Xiang, Y. (2009), "Flexural vibration and elastic buckling of a cracked timoshenko beam made of functionally graded materials", Mech. Adv. Mater. Struct., 16(6), 488-502. https://doi.org/10.1080/15376490902781175.   DOI