• Title/Summary/Keyword: Yield component

Search Result 611, Processing Time 0.027 seconds

Effect of fermented spent instant coffee grounds on milk productivity and blood profiles of lactating dairy cows

  • Choi, Yongjun;Rim, Jongsu;Lee, Honggu;Kwon, Hyunchul;Na, Youngjun;Lee, Sangrak
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.1007-1014
    • /
    • 2019
  • Objective: This study was conducted to evaluate the fermentation characteristics under low mesophilic temperature of spent instant coffee ground (SICG) and to estimate the effect of fermented SICG (FSICG) as alternative feed ingredient on milk productivity of dairy cows. Methods: In the fermentation trial, fermentation of SICG was performed to investigate changes in characteristics using the microbial mixture (Lactobacillus plantarum, Saccharomyces cerevisiae, and Bacillus subtilis = 1:1:1) for 21 days at $20^{\circ}C$ under anaerobic conditions. Molasses was added at 5% of dry mass. In the animal trial, eighteen Holstein Friesian cows were used to evaluate the nutritive value of the FSICG which was fermented for 14 days under the same condition as the fermentation trial. Results: In the fermentation trial, the dry matter (DM) and organic matter content linearly decreased with fermentation time (p<0.001 and p = 0.008, respectively). The acid detergent insoluble nitrogen content linearly decreased with fermentation time (p = 0.037). The microorganism counts linearly increased for Lactobacillus plantarum, Saccharomyces cerevisiae, and Bacillus subtilis across fermentation time (p<0.001). In the animal trial, the DM intake of the control and FSICG treatment were not significantly different, as were milk yield, 4% fat corrected milk, fat-protein corrected milk, and feed to milk conversion content. Fat, protein, lactose, non-fat solids, milk urea nitrogen, and somatic cell counts were also not significantly different in milk composition between treatments. Conclusion: FSICG should be considered a sufficient substitute for cottonseed as a feed component, and 5% DM of a dietary FSICG level was appropriate for dairy cow diets.

Processing and Quality Characteristics of a Cultured Recessive Small-sized Abalone Haliotis discus hannai Extract (양식 참전복(Haliotis discus hannai) 열성패 추출물의 제조 및 품질특성)

  • Cho, Jun-Hyun;Nam, Hyeon-Gyu;Oh, Kwang-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.6
    • /
    • pp.640-646
    • /
    • 2018
  • To determine whether there are differences in the food component characteristics of the cultured recessive small-sized abalone Haliotis discus hannai (SA; 30-40 each/kg) and middle-sized abalone (MA; 10-15 each/kg), the proximate compositions, fatty acid and total amino acid compositions of these two species were evaluated. Additionally, extraction methods were performed on the SA to asses the quality characteristics of the resulting. In terms of proximate composition, MA had lower moisture and carbohydrate levels and higher crude protein contents than SA. The total amino acid contents of MA and SA were 15,734.4 and 11,379.1 mg/100 g, respectively, the major amino acids were glutamic acid, aspartic acid, serine, glycine, alanine, leucine, arginine and lysine, and the major fatty acids were 16:0, 18:0, 18:1n-9, 18:1n-7, 20:4n-6, 20:5n-3, and 22:5n-3. The pH levels and total nitrogen and amino nitrogen contents of the hot-water extract (WE) and scrap enzyme hydrolysate (SE) samples from the SA were 6.32 and 6.05, 1.36% and 1.52%, and 342.1 and 403.1 mg/100 g, respectively. The extraction yields and free amino acid contents from SA were 1,317 and 440 mL/kg, and 8,721.1 and 9,070.7 mg/100 g, respectively, and the concentrations of major components were as follows: arginine, glycine, glutamic acid, alanine and lysine. Additionally, the complex extract (WE+SE) was superior to the traditional extract (WE) in terms of extraction yield, amino-nitrogen content, and organoleptic qualities but not odor.

Evaluation of 3D concrete printing performance from a rheological perspective

  • Lee, Keon-Woo;Lee, Ho-Jae;Choi, Myoung-Sung
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.155-163
    • /
    • 2019
  • The objective of this study was to derive a cementitious material for three-dimensional (3D) concrete printing that fulfills key performance functions, extrudability, buildability and bondability for 3D concrete printing. For this purpose, the rheological properties shown by different compositions of cement paste, the most fundamental component of concrete, were assessed, and the correlation between the rheological properties and key performance functions was analyzed. The results of the experiments indicated that the overall properties of a binder have a greater influence on the yield stress than the plastic viscosity. When the performance of a cementitious material for 3D printing was considered in relation with the properties of a binder, a mixture with FA or SF was thought to be more appropriate; however, a mixture containing GGBS was found to be inappropriate as it failed to meet the required function especially, buildability and extrudability. For a simple quantitative evaluation, the correlation between the rheological parameters of cementitious materials and simplified flow performance test results-time taken to reach T-150 and the number of hits required to reach T-150-in consideration of the flow of cementitious materials was compared. The result of the analysis showed a high reliability for the correlation between the rheological parameters and the time taken to reach T-150, but a low reliability for the number of hits needed for the fluid to reach T-150. In conclusion, among several performance functions, extrudability and buildability were mainly assessed based on the results obtained from various formulations from a rheological perspective, and the suitable formulations of composite materials for 3D printing was derived.

Structural Stability of High-temperature Butterfly Valve Using Interaction Analysis

  • Lee, Moon-Hee;Son, In-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_1
    • /
    • pp.881-888
    • /
    • 2020
  • A butterfly valve is a valve that adjusts flow rate by rotating a disc for about 90° with respect to the axis that is perpendicular to the flow path from the center of its body. This valve can be manufactured for low-temperature, high-temperature and high-pressure conditions because there are few restrictions on the used materials. However, the development of valves that can be used in a 600℃ environment is subject to many constraints. In this study, the butterfly valve's stability was evaluated by a fluid-structured interaction analysis, thermal-structure interaction analysis, and seismic analysis for the development of valves that can be used in high-temperature environments. When the reverse-pressure was applied to the valve in the structural analysis, the stress was low in the body and seat compared to the normal pressure. Compared with the allowable strength of the material for the parts of the valve system, the minimum safety factor was approximately 1.4, so the valve was stable. As a result of applying the design pressures of 0.5 MPa and 600℃ under the load conditions in the thermal-structural analysis, the safety factor in the valve body was about 3.4 when the normal pressure was applied and about 2.7 when the reverse pressure was applied. The stability of the fluid-structure interaction analysis was determined to be stable compared to the 600℃ yield strength of the material, and about 2.2 for the 40° open-angle disc for the valve body. In seismic analysis, the maximum value of the valve's stress value was about 9% to 11% when the seismic load was applied compared to the general structural analysis. Based on the results of this study, the structural stability and design feasibility of high-temperature valves that can be used in cogeneration plants and other power plants are presented.

Disintegration of sewage sludge using combined pre-treatment thermal hydrolysis and separation (열가수분해-고액분리 결합 공정을 적용한 하수슬러지의 가용화)

  • Lee, See-Young;Han, Ihn-Sup
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.107-114
    • /
    • 2021
  • This study applied with pre-treatment combined with thermal hydrolysis and seperation for disintegration of sludge. As results of particle size distribution D10, D50 and D90 of thermal hydrolyzed and centrifuged sludge was 8.6, 59.2 and 425.1 ㎛, which are lower than those of thermal hydrolyzed. The molecular weight distribution results showed that the thermal hydrolyzed sludge showed the highest proportion in the 10-100kDa range. But, Sludge, treated with combined pre-treatment, showed the highest proportion <1kDa range. Results of DOC and UVA254 found that the organic matters of hydrolyzed sludge composed high molecular weight component above 10kDa. While, the organic matters of sludge, treated by combined pre-treatment, composed relarively low molecular weight below 1kDa. The specific methane yield of hydrolyzed and centrifuged sludge was higher 1.7 times than that of only hydrolyzed sludge.

Analysis of genome variants in dwarf soybean lines obtained in F6 derived from cross of normal parents (cultivated and wild soybean)

  • Roy, Neha Samir;Ban, Yong-Wook;Yoo, Hana;Ramekar, Rahul Vasudeo;Cheong, Eun Ju;Park, Nam-Il;Na, Jong Kuk;Park, Kyong-Cheul;Choi, Ik-Young
    • Genomics & Informatics
    • /
    • v.19 no.2
    • /
    • pp.19.1-19.9
    • /
    • 2021
  • Plant height is an important component of plant architecture and significantly affects crop breeding practices and yield. We studied DNA variations derived from F5 recombinant inbred lines (RILs) with 96.8% homozygous genotypes. Here, we report DNA variations between the normal and dwarf members of four lines harvested from a single seed parent in an F6 RIL population derived from a cross between Glycine max var. Peking and Glycine soja IT182936. Whole genome sequencing was carried out, and the DNA variations in the whole genome were compared between the normal and dwarf samples. We found a large number of DNA variations in both the dwarf and semi-dwarf lines, with one single nucleotide polymorphism (SNP) per at least 3.68 kb in the dwarf lines and 1 SNP per 11.13 kb of the whole genome. This value is 2.18 times higher than the expected DNA variation in the F6 population. A total of 186 SNPs and 241 SNPs were discovered in the coding regions of the dwarf lines 1282 and 1303, respectively, and we discovered 33 homogeneous nonsynonymous SNPs that occurred at the same loci in each set of dwarf and normal soybean. Of them, five SNPs were in the same positions between lines 1282 and 1303. Our results provide important information for improving our understanding of the genetics of soybean plant height and crop breeding. These polymorphisms could be useful genetic resources for plant breeders, geneticists, and biologists for future molecular biology and breeding projects.

Antiplatelet fraction from Ulmi cortex and its active components (유백피의 항혈전 활성 분획 및 유효성분에 관한 연구)

  • Kim, Dong-Seon;Yang, Won-Kyung;Sung, Yoon-Young;Lim, Sun Mi;Kim, Ho Kyoung
    • The Korea Journal of Herbology
    • /
    • v.28 no.3
    • /
    • pp.39-44
    • /
    • 2013
  • Objectives : The purpose of this study was to identify active fraction and components from antiplatelet Ulmi cortex extract. Methods : The 70% ethanol extract of Ulmi cortex was subjected to column chromatography over D101 resin and eluted with an 20% (W1), 30% (W2), 40% (W3), 50%(W4), 70% (W5), and 100% ethanol (W6) to yield 6 fractions. W6 was further fractioned and its active components were purified using semi-preparative HPLC. The isolated compounds were identified by MS and NMR, and their contents were simultaneously analyzed using HPLC/UV. Antiplatelet aggregation activities of the fractions and the compounds were evaluated using rat platelet-rich plasma in presence of collagen ($5{\mu}g/ml$), arachidonic acid (0.05 U/ml), or thrombin ($100{\mu}M$). Results : Among six fractions, W3 prominently inhibited platelet aggregation. At the concentration of $200{\mu}g/ml$, W3 strongly inhibited arachidonic acid- and collagen-induced platelet aggregations by 78.2% and 65.9%, respectivley, and weakly inhibited thrombin-inducded platelet aggregation by 32.6%. Catechin, epicatehin, and catechin-7-O-${\beta}$-D-glucopyranoside were isolated from W3 and their contents were revealed to be 15.1%, 0.87%, and 0.32%. Catechin and epicatechin at the concentrations of $100{\mu}M$ strongly inhibited collagen-induced platelet aggregation by 79.9% and 86.6%, respectively, but weakly inhibited arachidonic acid- and thrombin-induced platelet aggregations. Conclusions : A main active principle of anitplatelet Ulmi Cortex extract is W3 fraction, of which main active component is catechin considering its antiplatelet activity and content.

Comparison of Antioxidant and Physiological Activities of Different Solvent Extracts from Codium fragile (청각(Codium fragile) 추출물의 항산화성 및 생리활성)

  • Park, Da-Bin;Lee, Yeon-Ji;Rho, Jin-Woong;Kim, Won-Suk;Park, Sun Joo;Kim, Yong-Tae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.6
    • /
    • pp.858-866
    • /
    • 2022
  • The present study investigated the chemical composition, and antioxidant and physiological activities of the Korean marine algae, Codium fragile. The solvent extracts from C. fragile were prepared using 70% ethanol, 80% methanol, and distilled water. Based on the general chemical composition, carbohydrate, crude protein, crude lipid, crude ash, and moisture were 74.22%, 16.73%, 0.66%, 4.39%, and 4.00%, respectively. Calcium, magnesium, sodium and potassium were the main minerals. The extraction yield range of the solvent extracts was 3.51-9.76%. The ranges of total polyphenol and flavonoid contents were approximately 10.97-13.76 mg/g and 8.00-8.69 mg/g, respectively. The ABTS [2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)] radical scavenging activity, reducing power and FRAP (ferric reducing antioxidant power) activities were the highest in the ethanol extract, while methanol extract exhibited the strongest nitrite oxide scavenging activity. On the other hand, tyrosinase, elastase, and xanthine oxidase inhibitory activities of the ethanol and methanol extracts were higher than those of the water extract. Furthermore, the ethanol extract exhibited the highest β-secretase inhibitory activity. The results indicate that C. fragile can be used as an antioxidant and a functional ingredient in food and pharmaceutical products.

How to develop strategies to use insects as animal feed: digestibility, functionality, safety, and regulation

  • Jae-Hoon, Lee;Tae-Kyung, Kim;Ji Yoon, Cha;Hae Won, Jang;Hae In, Yong;Yun-Sang, Choi
    • Journal of Animal Science and Technology
    • /
    • v.64 no.3
    • /
    • pp.409-431
    • /
    • 2022
  • Various insects have emerged as novel feed resources due to their economical, eco-friendly, and nutritive characteristics. Fish, poultry, and pigs are livestock that can feed on insects. The digestibility of insect-containing meals were presented by the species, life stage, nutritional component, and processing methods. Several studies have shown a reduced apparent digestibility coefficient (ADC) when insects were supplied as a replacement for commercial meals related to chitin. Although the expression of chitinase mRNA was present in several livestock, indigestible components in insects, such as chitin or fiber, could be a reason for the reduced ADC. However, various components can positively affect livestock health. Although the bio-functional properties of these components have been verified in vitro, they show positive health-promoting effects owing to their functional expression when directly applied to animal diets. Changes in the intestinal microbiota of animals, enhancement of immunity, and enhancement of antibacterial activity were confirmed as positive effects that can be obtained through insect diets. However, there are some issues with the safety of insects as feed. To increase the utility of insects as feed, microbial hazards, chemical hazards, and allergens should be regulated. The European Union, North America, East Asia, Australia, and Nigeria have established regulations regarding insect feed, which could enhance the utility of insects as novel feed resources for the future.

Liquefaction Characteristics of Polyethylene-Polypropylene Mixture by Pyrolysis at Low Temperature (Polyethylene-Polypropylene 혼합물의 저온 열분해에 의한 액화특성)

  • Cho, Sung-Hyun;Choi, Hong-Jun;Na, Byung-Ki;Lee, Bong-Hee
    • Clean Technology
    • /
    • v.15 no.2
    • /
    • pp.109-115
    • /
    • 2009
  • The low temperature pyrolysis of polyethylene (PE), polypropylene (PP) and polyethylene-polypropylene (PE-PP) mixture in a batch reactor at the atmospheric pressure and $450^{\circ}C$ was carried out to investigate the synergy effect of PE-PP mixture. The pyrolysis time was from 20 to 80 mins. The products formed during pyrolysis were classified into gas, gasoline, kerosene, gas oil and heavy oil according to the petroleum product quality standard of Korea Institute of Petroleum Quality. The analysis of the product oils by GC/MS showed that no new component was detected and no synergy effect was made by mixing of PE and PP. Conversions and yields of PE-PP mixtures were linearly dependent on the mixing ratio of samples.