How to develop strategies to use insects as animal feed: digestibility, functionality, safety, and regulation |
Jae-Hoon, Lee
(Research Group of Food Processing, Korean Food Research Institute)
Tae-Kyung, Kim (Research Group of Food Processing, Korean Food Research Institute) Ji Yoon, Cha (Research Group of Food Processing, Korean Food Research Institute) Hae Won, Jang (Department of Food Science and Biotechnology, Sungshin Women's University) Hae In, Yong (Division of Animal and Dairy Science, Chungnam National University) Yun-Sang, Choi (Research Group of Food Processing, Korean Food Research Institute) |
1 | Maciel-Vergara G, Ros VID. Viruses of insects reared for food and feed. J Invertebr Pathol. 2017;147:60-75. https://doi.org/10.1016/j.jip.2017.01.013 DOI |
2 | Muller A, Wiedmer S, Kurth M. Risk evaluation of passive transmission of animal parasites by feeding of black soldier fly (Hermetia illucens) larvae and prepupae. J Food Prot. 2019;82:948-54. https://doi.org/10.4315/0362-028X.JFP-18-484 DOI |
3 | Meyer AM, Meijer N, Hoek-van den Hil EF, van der Fels-Klerx HJ. Chemical food safety hazards of insects reared for food and feed. J Insects Food Feed. 2021;7:823-31. https://doi.org/10.3920/JIFF2020.0085 DOI |
4 | Govorushko S. Global status of insects as food and feed source: a review. Trends Food Sci Technol. 2019;91:436-45. https://doi.org/10.1016/j.tifs.2019.07.032 DOI |
5 | Premrov Bajuk B, Zrimsek P, Kotnik T, Leonardi A, Krizaj I, Jakovac Strajn B. Insect proteinbased diet as potential risk of allergy in dogs. Animals. 2021;11:1942. https://doi.org/10.3390/ani11071942 DOI |
6 | Lahteenmaki-Uutela A, Marimuthu SB, Meijer N. Regulations on insects as food and feed: a global comparison. J Insects Food Feed. 2021;7:849-56. https://doi.org/10.3920/JIFF2020.0066 DOI |
7 | Lahteenmaki-Uutela A, Grmelova N, Henault-Ethier L, Deschamps MH, Vandenberg GW, Zhao A, et al. Insects as food and feed: laws of the European Union, United States, Canada, Mexico, Australia, and China. Eur Food Feed Law Rev. 2017;12:22. |
8 | Jo YH, Lee JW. Insect feed for animals under the hazard analysis and critical control points (HACCP) regulations. Entomol Res. 2016;46:2-4. https://doi.org/10.1111/1748-5967.12157 DOI |
9 | Kim JW. Insect industry for future super foods. Food Sci Anim Resour Ind. 2019;8:74-7. |
10 | Usman HS, Yusuf AA. Legislation and legal frame work for sustainable edible insects use in Nigeria. Int J Trop Insect Sci. 2021;41:2201-9. https://doi.org/10.1007/s42690-020-00291-9 DOI |
11 | Bake GG, Ajibade DO, Gana AB, Yakubu FB, Samaila J, Abdulkarim IA, et al. Growth performance, body composition, and apparent nutrient digestibility of hybrid catfish fingerlings fed with blended insect meal. Nigerian J Fish. 2021;18:2118-28. |
12 | Dorper A, Veldkamp T, Dicke M. Use of black soldier fly and house fly in feed to promote sustainable poultry production. J Insects Food Feed. 2021;7:761-80. https://doi.org/10.3920/JIFF2020.0064 DOI |
13 | Schiavone A, De Marco M, Martinez S, Dabbou S, Renna M, Madrid J, et al. Nutritional value of a partially defatted and a highly defatted black soldier fly larvae (Hermetia illucens L.) meal for broiler chickens: apparent nutrient digestibility, apparent metabolizable energy and apparent ileal amino acid digestibility. J Anim Sci Biotechnol. 2017;8:51. https://doi.org/10.1186/s40104-017-0181-5 DOI |
14 | Elwert C, Knips I, Katz P. A novel protein source: maggot meal of the black soldier fly (Hermetia illucens) in broiler feed. In: Tagung Schweine-und Geflugelernahrung; 2010; Wittenberg. p. 140-2. |
15 | De Marco M, Martinez S, Hernandez F, Madrid J, Gai F, Rotolo L, et al. Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Anim Feed Sci Technol. 2015;209:211-8. https://doi.org/10.1016/j.anifeedsci.2015.08.006 DOI |
16 | Suzuki M, Fujimoto W, Goto M, Morimatsu M, Syuto B, Iwanaga T. Cellular expression of gut chitinase mRNA in the gastrointestinal tract of mice and chickens. J Histochem Cytochem. 2002;50:1081-9. https://doi.org/10.1177/002215540205000810 DOI |
17 | Secci G, Addeo NF, Rodriguez LFP, Bovera F, Moniello G, Parisi G. In vivo performances, ileal digestibility, and physicochemical characterization of raw and boiled eggs as affected by Tenebrio molitor larvae meal at low inclusion rate in laying quail (Coturnix japonica) diet. Poult Sci. 2021;100:101487. https://doi.org/10.1016/j.psj.2021.101487 DOI |
18 | Marono S, Piccolo G, Loponte R, Di Meo C, Attia YA, Nizza A, et al. In vitro crude protein digestibility of Tenebrio molitor and Hermetia illucens insect meals and its correlation with chemical composition traits. Ital J Anim Sci. 2015;14:3889. https://doi.org/10.4081/ijas.2015.3889 DOI |
19 | Woods MJ, Cullere M, Van Emmenes L, Vincenzi S, Pieterse E, Hoffman LC, et al. Hermetia illucens larvae reared on different substrates in broiler quail diets: effect on apparent digestibility, feed-choice and growth performance. J Insects Food Feed. 2019;5:89-98. https://doi.org/10.3920/JIFF2018.0027 DOI |
20 | Bovera F, Loponte R, Pero ME, Cutrignelli MI, Calabro S, Musco N, et al. Laying performance, blood profiles, nutrient digestibility and inner organs traits of hens fed an insect meal from Hermetia illucens larvae. Res Vet Sci. 2018;120:86-93. https://doi.org/10.1016/j.rvsc.2018.09.006 DOI |
21 | Sypniewski J, Kieronczyk B, Benzertiha A, Mikolajczak Z, Pruszynska-Oszmalek E, Kolodziejski P, et al. Replacement of soybean oil by Hermetia illucens fat in turkey nutrition: effect on performance, digestibility, microbial community, immune and physiological status and final product quality. Br Poult Sci. 2020;61:294-302. https://doi.org/10.1080/00071668.2020.1716302 DOI |
22 | Kovitvadhi A, Chundang P, Thongprajukaew K, Tirawattanawanich C, Srikachar S, Chotimanothum B. Potential of insect meals as protein sources for meat-type ducks based on in vitro digestibility. Animals. 2019;9:155. https://doi.org/10.3390/ani9040155 DOI |
23 | Ao X, Kim IH. Effects of dietary dried mealworm (Ptecticus tenebrifer) larvae on growth performance and nutrient digestibility in weaning pigs. Livest Sci. 2019;230:103815. https://doi.org/10.1016/j.livsci.2019.09.031 DOI |
24 | DiGiacomo K, Leury BJ. Review: insect meal: a future source of protein feed for pigs? Animal. 2019;13:3022-30. https://doi.org/10.1017/S1751731119001873 DOI |
25 | Hakenasen IM, Grepperud GH, Hansen JO, Overland M, Anestad RM, Mydland LT. Full-fat insect meal in pelleted diets for weaned piglets: effects on growth performance, nutrient digestibility, gastrointestinal function, and microbiota. Anim Feed Sci Technol. 2021;281:115086. https://doi.org/10.1016/j.anifeedsci.2021.115086 DOI |
26 | Biasato I, Renna M, Gai F, Dabbou S, Meneguz M, Perona G, et al. Partially defatted black soldier fly larva meal inclusion in piglet diets: effects on the growth performance, nutrient digestibility, blood profile, gut morphology and histological features. J Anim Sci Biotechnol. 2019;10:12. https://doi.org/10.1186/s40104-019-0325-x DOI |
27 | Yoo JS, Cho KH, Hong JS, Jang HS, Chung YH, Kwon GT, et al. Nutrient ileal digestibility evaluation of dried mealworm (Tenebrio molitor) larvae compared to three animal protein by-products in growing pigs. Asian-Australas J Anim Sci. 2019;32:387-94. https://doi.org/10.5713/ajas.18.0647 DOI |
28 | Cho KH, Kang SW, Yoo JS, Song DK, Chung YH, Kwon GT, et al. Effects of mealworm (Tenebrio molitor) larvae hydrolysate on nutrient ileal digestibility in growing pigs compared to those of defatted mealworm larvae meal, fermented poultry by-product, and hydrolyzed fish soluble. Asian-Australas J Anim Sci. 2020;33:490-500. https://doi.org/10.5713/ajas.19.0793 DOI |
29 | Chia SY, Tanga CM, Osuga IM, Alaru AO, Mwangi DM, Githinji M, et al. Black soldier fly larval meal in feed enhances growth performance, carcass yield and meat quality of finishing pigs. J Insects Food Feed. 2021;7:433-47. https://doi.org/10.3920/JIFF2020.0072 DOI |
30 | Zhou P, Li J, Yan T, Wang X, Huang J, Kuang Z, et al. Selectivity of deproteinization and demineralization using natural deep eutectic solvents for production of insect chitin (Hermetia illucens). Carbohydr Polym. 2019;225:115255. https://doi.org/10.1016/j.carbpol.2019.115255 DOI |
31 | Vercruysse L, Van Camp J, Smagghe G. ACE inhibitory peptides derived from enzymatic hydrolysates of animal muscle protein: a review. J Agric Food Chem. 2005;53:8106-15. https://doi.org/10.1021/jf0508908 DOI |
32 | Li H, Inoue A, Taniguchi S, Yukutake T, Suyama K, Nose T, et al. Multifunctional biological activities of water extract of housefly larvae (Musca domestica). Pharma Nutrition. 2017;5:119-26. https://doi.org/10.1016/j.phanu.2017.09.001 DOI |
33 | Seo M, Goo TW, Chung MY, Baek M, Hwang JS, Kim MA, et al. Tenebrio molitor larvae inhibit adipogenesis through AMPK and MAPKs signaling in 3T3-L1 adipocytes and obesity in high-fat diet-induced obese mice. Int J Mol Sci. 2017;18:518. https://doi.org/10.3390/ijms18030518 DOI |
34 | Messina CM, Gaglio R, Morghese M, Tolone M, Arena R, Moschetti G, et al. Microbiological profile and bioactive properties of insect powders used in food and feed formulations. Foods. 2019;8:400. https://doi.org/10.3390/foods8090400 DOI |
35 | Vercruysse L, Smagghe G, Matsui T, Van Camp J. Purification and identification of an angiotensin I converting enzyme (ACE) inhibitory peptide from the gastrointestinal hydrolysate of the cotton leafworm, Spodoptera littoralis. Process Biochem. 2008;43:900-4. https://doi.org/10.1016/j.procbio.2008.04.014 DOI |
36 | Moniello G, Ariano A, Panettieri V, Tulli F, Olivotto I, Messina M, et al. Intestinal morphometry, enzymatic and microbial activity in laying hens fed different levels of a Hermetia illucens larvae meal and toxic elements content of the insect meal and diets. Animals. 2019;9:86. https://doi.org/10.3390/ani9030086 DOI |
37 | Sunkara LT, Jiang W, Zhang G. Modulation of antimicrobial host defense peptide gene expression by free fatty acids. PLOS ONE. 2012;7:e49558. https://doi.org/10.1371/journal.pone.0049558 DOI |
38 | Borrelli L, Coretti L, Dipineto L, Bovera F, Menna F, Chiariotti L, et al. Insect-based diet, a promising nutritional source, modulates gut microbiota composition and SCFAs production in laying hens. Sci Rep. 2017;7:16269. https://doi.org/10.1038/s41598-017-16560-6 DOI |
39 | Biasato I, Ferrocino I, Dabbou S, Evangelista R, Gai F, Gasco L, et al. Black soldier fly and gut health in broiler chickens: insights into the relationship between cecal microbiota and intestinal mucin composition. J Anim Sci Biotechnol. 2020;11:11. https://doi.org/10.1186/s40104-019-0413-y DOI |
40 | Rehman HU, Vahjen W, Awad WA, Zentek J. Indigenous bacteria and bacterial metabolic products in the gastrointestinal tract of broiler chickens. Arch Anim Nutr. 2007;61:319-35. https://doi.org/10.1080/17450390701556817 DOI |
41 | Biasato I, Ferrocino I, Biasibetti E, Grego E, Dabbou S, Sereno A, et al. Modulation of intestinal microbiota, morphology and mucin composition by dietary insect meal inclusion in free-range chickens. BMC Vet Res. 2018;14:383. https://doi.org/10.1186/s12917-018-1690-y DOI |
42 | Jozefiak A, Kieronczyk B, Rawski M, Mazurkiewicz J, Benzertiha A, Gobbi P, et al. Fullfat insect meals as feed additive - the effect on broiler chicken growth performance and gastrointestinal tract microbiota. J Anim Feed Sci. 2018;27:131-9. https://doi.org/10.22358/jafs/91967/2018 DOI |
43 | Biasato I, Ferrocino I, Colombino E, Gai F, Schiavone A, Cocolin L, et al. Effects of dietary Hermetia illucens meal inclusion on cecal microbiota and small intestinal mucin dynamics and infiltration with immune cells of weaned piglets. J Anim Sci Biotechnol. 2020;11:64. https://doi.org/10.1186/s40104-020-00466-x DOI |
44 | Jozefiak A, Benzertiha A, Kieronczyk B, Lukomska A, Wesolowska I, Rawski M. Improvement of cecal commensal microbiome following the insect additive into chicken diet. Animals. 2020;10:577. https://doi.org/10.3390/ani10040577 DOI |
45 | Shapiro F, Mahagna M, Nir I. Stunting syndrome in broilers: effect of glucose or maltose supplementation on digestive organs, intestinal disaccharidases, and some blood metabolites. Poult Sci. 1997;76:369-80. https://doi.org/10.1093/ps/76.2.369 DOI |
46 | Yu M, Li Z, Chen W, Wang G, Rong T, Liu Z, et al. Hermetia illucens larvae as a fishmeal replacement alters intestinal specific bacterial populations and immune homeostasis in weanling piglets. J Anim Sci. 2020;98:skz395. https://doi.org/10.1093/jas/skz395 DOI |
47 | Diaz J, Reese AT. Possibilities and limits for using the gut microbiome to improve captive animal health. Anim Microbiome. 2021;3:89. https://doi.org/10.1186/s42523-021-00155-8 DOI |
48 | Lee WJ, Hase K. Gut microbiota-generated metabolites in animal health and disease. Nat Chem Biol. 2014;10:416-24. https://doi.org/10.1038/nchembio.1535 DOI |
49 | Hossain SM, Blair R. Chitin utilisation by broilers and its effect on body composition and blood metabolites. Br Poult Sci. 2007;48:33-8. https://doi.org/10.1080/00071660601156529 DOI |
50 | Lee J, Kim YM, Park YK, Yang YC, Jung BG, Lee BJ. Black soldier fly (Hermetia illucens) larvae enhances immune activities and increases survivability of broiler chicks against experimental infection of Salmonella Gallinarum. J Vet Med Sci. 2018:736-40. https://doi.org/10.1292/jvms.17-0236 DOI |
51 | Ghosh S, Lee SM, Jung C, Meyer-Rochow VB. Nutritional composition of five commercial edible insects in South Korea. J Asia Pac Entomol. 2017;20:686-94. https://doi.org/10.1016/j.aspen.2017.04.003 DOI |
52 | Bovera F, Piccolo G, Gasco L, Marono S, Loponte R, Vassalotti G, et al. Yellow mealworm larvae (Tenebrio molitor, L.) as a possible alternative to soybean meal in broiler diets. Br Poult Sci. 2015;56:569-75. https://doi.org/10.1080/00071668.2015.1080815 DOI |
53 | Biasato I, Gasco L, De Marco M, Renna M, Rotolo L, Dabbou S, et al. Effects of yellow mealworm larvae (Tenebrio molitor) inclusion in diets for female broiler chickens: implications for animal health and gut histology. Anim Feed Sci Technol. 2017;234:253-63. https://doi.org/10.1016/j.anifeedsci.2017.09.014 DOI |
54 | Yu M, Li Z, Chen W, Rong T, Wang G, Wang F, et al. Evaluation of full-fat Hermetia illucens larvae meal as a fishmeal replacement for weanling piglets: effects on the growth performance, apparent nutrient digestibility, blood parameters and gut morphology. Anim Feed Sci Technol. 2020;264:114431. https://doi.org/10.1016/j.anifeedsci.2020.114431 DOI |
55 | Jung AH, Hwang JH, Park SH. Production technologies of meat analogue. Food Sci Anim Resour Ind. 2021;10:54-60. |
56 | Zielinska E, Baraniak B, Karas M, Rybczynska K, Jakubczyk A. Selected species of edible insects as a source of nutrient composition. Food Res Int. 2015;77:460-6. https://doi.org/10.1016/j.foodres.2015.09.008 DOI |
57 | Gwak MG, Park HS, Kim BK, Park HB, Kim JH. Effects of feeding enzyme-hydrolyzed poultry by-product meal on productivity and blood biochemical characteristics in broilers. Korean J Poult Sci. 2021;48:133-42. https://doi.org/10.5536/KJPS.2021.48.3.133 DOI |
58 | Jang TH, Jung SM, Kim E, Lee YS, Lee SM. Nutritional value and digestibility of Tenebrio molitor as a feed ingredient for Rockfish (Sebastes schlegeli). J Fish Mar Sci Educ. 2017;29:888-98. https://doi.org/10.13000/JFMSE.2017.29.3.888 DOI |
59 | Rahimnejad S, Zhang JJ, Wang L, Sun Y, Zhang C. Evaluation of Bacillus pumillus SE5 fermented soybean meal as a fish meal replacer in spotted seabass (Lateolabrax maculatus) feed. Aquaculture. 2021;531:735975. https://doi.org/10.1016/j.aquaculture.2020.735975 DOI |
60 | Veldkamp T, Vernooij AG. Use of insect products in pig diets. J Insects Food Feed. 2021;7:781-93. https://doi.org/10.3920/JIFF2020.0091 DOI |
61 | Bazoche P, Poret S. Acceptability of insects in animal feed: a survey of French consumers. J Consum Behav. 2021;20:251-70. https://doi.org/10.1002/cb.1845 DOI |
62 | Praveena PE, Periasamy S, Kumar AA, Singh N. Cytokine profiles, apoptosis and pathology of experimental Pasteurella multocida serotype A1 infection in mice. Res Vet Sci. 2010;89:332-9. https://doi.org/10.1016/j.rvsc.2010.04.012 DOI |
63 | Zhang C, Peng Y, Mu C, Zhu W. Ileum terminal antibiotic infusion affects jejunal and colonic specific microbial population and immune status in growing pigs. J Anim Sci Biotechnol. 2018;9:51. https://doi.org/10.1186/s40104-018-0265-x DOI |
64 | Chia SY, Tanga CM, Osuga IM, Alaru AO, Mwangi DM, Githinji M, et al. Effect of dietary replacement of fishmeal by insect meal on growth performance, blood profiles and economics of growing pigs in Kenya. Animals. 2019;9:705. https://doi.org/10.3390/ani9100705 DOI |
65 | Nathan C. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol. 2006;6:173-82. https://doi.org/10.1038/nri1785 DOI |
66 | Ji YJ, Liu HN, Kong XF, Blachier F, Geng MM, Liu YY, et al. Use of insect powder as a source of dietary protein in early-weaned piglets. J Anim Sci. 2016;94:111-6. https://doi.org/10.2527/jas.2015-9555 DOI |
67 | Islam MM, Yang CJ. Efficacy of mealworm and super mealworm larvae probiotics as an alternative to antibiotics challenged orally with Salmonella and E. coli infection in broiler chicks. Poult Sci. 2017;96:27-34. https://doi.org/10.3382/ps/pew220 DOI |
68 | Lagat MK, Were S, Ndwigah F, Kemboi VJ, Kipkoech C, Tanga CM. Antimicrobial activity of chemically and biologically treated chitosan prepared from black soldier fly (Hermetia illucens) pupal shell waste. Microorganisms. 2021;9:2417. https://doi.org/10.3390/microorganisms9122417 DOI |
69 | Silva DR, Sardi JCO, Pitangui NS, Roque SM, da Silva ACB, Rosalen PL. Probiotics as an alternative antimicrobial therapy: current reality and future directions. J Funct Foods. 2020;73:104080. https://doi.org/10.1016/j.jff.2020.104080 DOI |
70 | Park JH, Jung CE. Current status and prospects of animal feed insect industry. Korean J Soil Zool. 2013;17:9-13. |
71 | Lee JH, Kim TK, Jeong CH, Yong HI, Cha JY, Kim BK, et al. Biological activity and processing technologies of edible insects: a review. Food Sci Biotechnol. 2021;30:1003-23. https://doi.org/10.1007/s10068-021-00942-8 DOI |
72 | Choi IH, Ji SY, Park KH, Kim KH, Lee HS, Choi GS, et al. Changes in growth performance of broilers fed different levels of Hermetia illucens powder. J Environ Sci Int. 2018;27:1299-303. https://doi.org/10.5322/JESI.2018.27.12.1299 DOI |
73 | Jang WW, Chung TH, Choi IH. Growth performance and economic evaluation of insect feed powder-fed ducks. J Environ Sci Int. 2019;28:709-12. https://doi.org/10.5322/JESI.2019.28.8.709 DOI |
74 | Quang Tran H, Van Doan H, Stejskal V. Environmental consequences of using insect meal as an ingredient in aquafeeds: a systematic view. Rev Aquac. 2022;14:237-51. https://doi.org/10.1111/raq.12595 DOI |
75 | Moon SJ, Lee JW. Current views on insect feed and its future. Entomol Res. 2015;45:283-5. https://doi.org/10.1111/1748-5967.12138 DOI |
76 | Liu SY, Selle PH, Cowieson AJ. Strategies to enhance the performance of pigs and poultry on sorghum-based diets. Anim Feed Sci Technol. 2013;181:1-4. https://doi.org/10.1016/j.anifeedsci.2013.01.008 DOI |
77 | Sogari G, Amato M, Biasato I, Chiesa S, Gasco L. The potential role of insects as feed: a multiperspective review. Animals. 2019;9:119. https://doi.org/10.3390/ani9040119 DOI |
78 | Hua K, Cobcroft JM, Cole A, Condon K, Jerry DR, Mangott A, et al. The future of aquatic protein: implications for protein sources in aquaculture diets. One Earth. 2019;1:316-29. https://doi.org/10.1016/j.oneear.2019.10.018 DOI |
79 | Fontes TV, de Oliveira KRB, Gomes Almeida IL, Maria Orlando T, Rodrigues PB, Costa DV, et al. Digestibility of insect meals for Nile tilapia fingerlings. Animals. 2019;9:181. https://doi.org/10.3390/ani9040181 DOI |
80 | Kong XF, Wu GY, Liao YP, Hou ZP, Liu HJ, Yin FG, et al. Effects of Chinese herbal ultrafine powder as a dietary additive on growth performance, serum metabolites and intestinal health in early-weaned piglets. Livest Sci. 2007;108:272-5. https://doi.org/10.1016/j.livsci.2007.01.079 DOI |
81 | Spranghers T, Michiels J, Vrancx J, Ovyn A, Eeckhout M, De Clercq P, et al. Gut antimicrobial effects and nutritional value of black soldier fly (Hermetia illucens L.) prepupae for weaned piglets. Anim Feed Sci Technol. 2018;235:33-42. https://doi.org/10.1016/j.anifeedsci.2017.08.012 DOI |
82 | van der Fels-Klerx HJ, Camenzuli L, Belluco S, Meijer N, Ricci A. Food safety issues related to uses of insects for feeds and foods. Compr Rev Food Sci Food Saf. 2018;17:1172-83. https://doi.org/10.1111/1541-4337.12385 DOI |
83 | Dierick NA, Decuypere JA, Molly K, Van Beek E, Vanderbeke E. The combined use of triacylglycerols (TAGs) containing medium chain fatty acids (MCFAs) and exogenous lipolytic enzymes as an alternative to nutritional antibiotics in piglet nutrition: II. in vivo release of MCFAs in gastric cannulated and slaughtered piglets by endogenous and exogenous lipases; effects on the luminal gut flora and growth performance. Livest Prod Sci. 2002;76:1-16. https://doi.org/10.1016/S0301-6226(01)00331-1 DOI |
84 | Dabbou S, Ferrocino I, Gasco L, Schiavone A, Trocino A, Xiccato G, et al. Antimicrobial effects of black soldier fly and yellow mealworm fats and their impact on gut microbiota of growing rabbits. Animals. 2020;10:1292. https://doi.org/10.3390/ani10081292 DOI |
85 | Sudo N. Role of gut microbiota in brain function and stress-related pathology. Biosci Microbiota Food Health. 2019:75-80. https://doi.org/10.12938/bmfh.19-006 DOI |
86 | Netherlands Food and Consumer Product Safety Authority. Advisory report on the risks associated with the consumption of mass-reared insects. Utrecht: Nederlandse Voedsel- en Warenautoriteit; 2014. |
87 | Vandeweyer D, De Smet J, Van Looveren N, Van Campenhout L. Biological contaminants in insects as food and feed. J Insects Food Feed. 2021;7:807-22. https://doi.org/10.3920/JIFF2020.0060 DOI |
88 | Piccolo G, Iaconisi V, Marono S, Gasco L, Loponte R, Nizza S, et al. Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata). Anim Feed Sci Technol. 2017;226:12-20. https://doi.org/10.1016/j.anifeedsci.2017.02.007 DOI |
89 | Belforti M, Gai F, Lussiana C, Renna M, Malfatto V, Rotolo L, et al. Tenebrio molitor meal in rainbow trout (Oncorhynchus mykiss) diets: effects on animal performance, nutrient digestibility and chemical composition of fillets. Ital J Anim Sci. 2015;14:4170. https://doi.org/10.4081/ijas.2015.4170 DOI |
90 | Drew MD, Borgeson TL, Thiessen DL. A review of processing of feed ingredients to enhance diet digestibility in finfish. Anim Feed Sci Technol. 2007;138:118-36. https://doi.org/10.1016/j.anifeedsci.2007.06.019 DOI |
91 | Tharanathan RN, Kittur FS. Chitin - the undisputed biomolecule of great potential. Crit Rev Food Sci Nutr. 2003;43:61-87. https://doi.org/10.1080/10408690390826455 DOI |
92 | Shin J, Lee KJ. Digestibility of insect meals for Pacific white shrimp (Litopenaeus vannamei) and their performance for growth, feed utilization and immune responses. PLOS ONE. 2021;16:e0260305. https://doi.org/10.1371/journal.pone.0260305 DOI |
93 | Irungu FG, Mutungi CM, Faraj AK, Affognon H, Ekesi S, Nakimbugwe D, et al. Proximate composition and in vitro protein digestibility of extruded aquafeeds containing Acheta domesticus and Hermetia illucens fractions. J Insects Food Feed. 2018;4:275-84. https://doi.org/10.3920/JIFF2017.0089 DOI |
94 | Ramos-Elorduy J, Gonzalez EA, Hernandez AR, Pino JM. Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. J Econ Entomol. 2002;95:214-20. https://doi.org/10.1603/0022-0493-95.1.214 DOI |
95 | Benzertiha A, Kieronczyk B, Rawski M, Jozefiak A, Kozlowski K, Jankowski J, et al. Tenebrio molitor and Zophobas morio full-fat meals in broiler chicken diets: effects on nutrients digestibility, digestive enzyme activities, and cecal microbiome. Animals. 2019;9:1128. https://doi.org/10.3390/ani9121128 DOI |