DOI QR코드

DOI QR Code

Disintegration of sewage sludge using combined pre-treatment thermal hydrolysis and separation

열가수분해-고액분리 결합 공정을 적용한 하수슬러지의 가용화

  • Lee, See-Young (Department of Environmental Engineering, Graduate School, The University of Seoul) ;
  • Han, Ihn-Sup (Department of Environmental Engineering, Graduate School, The University of Seoul)
  • 이시영 (서울시립대학교 환경공학과) ;
  • 한인섭 (서울시립대학교 환경공학과)
  • Received : 2021.11.27
  • Accepted : 2021.12.17
  • Published : 2021.12.30

Abstract

This study applied with pre-treatment combined with thermal hydrolysis and seperation for disintegration of sludge. As results of particle size distribution D10, D50 and D90 of thermal hydrolyzed and centrifuged sludge was 8.6, 59.2 and 425.1 ㎛, which are lower than those of thermal hydrolyzed. The molecular weight distribution results showed that the thermal hydrolyzed sludge showed the highest proportion in the 10-100kDa range. But, Sludge, treated with combined pre-treatment, showed the highest proportion <1kDa range. Results of DOC and UVA254 found that the organic matters of hydrolyzed sludge composed high molecular weight component above 10kDa. While, the organic matters of sludge, treated by combined pre-treatment, composed relarively low molecular weight below 1kDa. The specific methane yield of hydrolyzed and centrifuged sludge was higher 1.7 times than that of only hydrolyzed sludge.

본 연구는 하수슬러지의 가용화를 위해 열가수분해와 고액분리 공정을 결합하여 적용하였다. 열가수분해-고액분리 공정으로 전처리한 하수슬러지의 D10, D50와 D90은 각각 8.6, 59.2와 425.1 ㎛로, 열가수분해 단독 처리한 것에 비해 작게 나타났다. 분자량 분포 실험의 결과에 따르면, 열가수분해 단독 처리한 하수슬러지는 10-100kDa 구간의 비율이 가장 높게 나타났다. 반면에, 열가수분해-고액분리된 하수슬러지는 <1kDa 구간의 비율이 48.3%로 가장 높게 나타났다. 단독 열가수분해 처리한 하수슬러지는 10kDa 이상의 구간에서 DOC와 UVA254가 높게 나타났다. 반면에 열가수분해-고액분리한 하수슬러지는 <1kDa 구간의 DOC와 UVA254가 가장 높은 비율로 나타났다. 열가수분해-고액분리한 하수슬러지의 메탄 전환율은 0.287±0.015 L CH4/kg COD로 단독 처리한 것에 비해 1.7배 높게 나타났다.

Keywords

References

  1. "Neumann, P., Gonzalez, Z. and Vidal, G., Sequential ultrasound and low-temperature thermal pretreatment: process optimization and influence on sewage sludge solubilization, enzyme activity and anaerobic digestion", Bioresour. Technol., 234, pp. 178~187. (2017). https://doi.org/10.1016/j.biortech.2017.03.029
  2. Ding, H.H., Chang, S. and Liu, Y., "Biological hydrolysis pretreatment on secondary sludge: enhancement of anaerobic digestion and mechanism study", Bioreour. Technol., 244, pp. 989~995. (2017). https://doi.org/10.1016/j.biortech.2017.08.064
  3. Han, D., Lee, C. Y., Chang, S. W. and Kim, D. J., "Enhanced methane production and wastewater sludge stabilization of a continuos full scale thermal pretreatment and thermophilic anaerobic digestion", Bioresource Technology, 245, pp. 1162~1167. (2017). https://doi.org/10.1016/j.biortech.2017.08.108
  4. Shao, L., Wang, X., Xu, H. and He, P., "Enhanced anaerobic digestion and sludge dewaterability by alkaline pretreatment and its mechanism", J. Environ. Sci., 24(10), pp. 1731~1738. (2012). https://doi.org/10.1016/S1001-0742(11)61031-0
  5. Chen, X., Xiang, X., Dai, R., Wang, Y. and Ma, P., "Effect of low temperature of thermal pretreatment on anaerobic digestion of textile dyeing sludge", Bioresour. Technol., 243, pp. 426~432. (2017). https://doi.org/10.1016/j.biortech.2017.06.138
  6. Hung-Wei, L., Xiao, S., Le, T., Al-Omari, A., Higgins, M., Boardman, G., Novak, J. and Murthy, S., "Evaluation of solubilization characteristics of thermal hydrolysis process", Proceedings of the Water Environment Federation, 2014(15), pp. 6312~6336. (2014). https://doi.org/10.2175/193864714815938896
  7. Everett, J. G., "Dewatering of wastewater sludge by heat treatment", J. Water Pollut. Control Fed, pp. 92~100. (1972).
  8. Bougrier, D. J. and Carrere, H., "Impacts of thermal pre-treatments on the semicontinuous anaerobic digestion of waste activated sludge", Biochem. Eng, J., 34(1), pp. 20~27. (2007). https://doi.org/10.1016/j.bej.2006.11.013
  9. Liu, X., Wang, W., Gao, X., Zhou, Y, and Shen, R. "Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste", Waste Manag, 32(2), pp. 249~255. (2012). https://doi.org/10.1016/j.wasman.2011.09.027
  10. Bougrier, C., Delgenes, J. P. and Carrere, H., "Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion", Chem. Eng. J., 139, pp. 236-244. (2008). https://doi.org/10.1016/j.cej.2007.07.099
  11. Noike, T., Endo, G., Chang, J. E., Yaguchi, J. I. and Matsumoto, J., Characteristics of carbohydrate degradation and the rate-limiting step in anaerobic digestion., Biotech. Bioeng., pp. 1482~1489. (1985).
  12. Li, Y. Y. and Noike, T., "Upgrading of anaerobic digestion of waste activated sludge by thermal hydrolysis", Water Sci. Technol., 26, pp. 857~866. (1992). https://doi.org/10.2166/wst.1992.0466
  13. Zhang, J., Xue, Y., Eshtiaghi, N., Dai, X., Tao, W. and Li, Z., "Evaluation of thermal hydrolysis efficiency of mechanically dewatered sewage sludge via rheological measurement", Water Res., 116, pp. 34~43. (2017). https://doi.org/10.1016/j.watres.2017.03.020
  14. Dwyer, J., Starrenburg, D., Tait, S., Barr, K., Batstone, D. J. and Lant, P., "Decreasing activated sludge thermal hydrolysis temperature reduces product colour, without decreasing degradability", Water Res., 42, pp. 4699~4709. (2008). https://doi.org/10.1016/j.watres.2008.08.019
  15. Lee, W., Westerhoff, P. and Esparza-Soto, M., "Occurrence and removal of dissolved organic nitrogen in US water treatment plants", Journal American Water Works Association, 98(10), pp. 102~110. (2006).