• 제목/요약/키워드: Yeh-wiener space

검색결과 17건 처리시간 0.021초

A VERSION OF A CONVERSE MEASURABILITY FOR WIENER SPACE IN THE ABSTRACT WIENER SPACE

  • Kim, Bong-Jin
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제7권1호
    • /
    • pp.41-47
    • /
    • 2000
  • Johnson and Skoug [Pacific J. Math. 83(1979), 157-176] introduced the concept of scale-invariant measurability in Wiener space. And the applied their results in the theory of the Feynman integral. A converse measurability theorem for Wiener space due to the $K{\ddot{o}}ehler$ and Yeh-Wiener space due to Skoug[Proc. Amer. Math. Soc 57(1976), 304-310] is one of the key concept to their discussion. In this paper, we will extend the results on converse measurability in Wiener space which Chang and Ryu[Proc. Amer. Math, Soc. 104(1998), 835-839] obtained to abstract Wiener space.

  • PDF

CONDITIONAL INTEGRAL TRANSFORMS OF FUNCTIONALS ON A FUNCTION SPACE OF TWO VARIABLES

  • Bong Jin, Kim
    • Korean Journal of Mathematics
    • /
    • 제30권4호
    • /
    • pp.593-601
    • /
    • 2022
  • Let C(Q) denote Yeh-Wiener space, the space of all real-valued continuous functions x(s, t) on Q ≡ [0, S] × [0, T] with x(s, 0) = x(0, t) = 0 for every (s, t) ∈ Q. For each partition τ = τm,n = {(si, tj)|i = 1, . . . , m, j = 1, . . . , n} of Q with 0 = s0 < s1 < . . . < sm = S and 0 = t0 < t1 < . . . < tn = T, define a random vector Xτ : C(Q) → ℝmn by Xτ (x) = (x(s1, t1), . . . , x(sm, tn)). In this paper we study the conditional integral transform and the conditional convolution product for a class of cylinder type functionals defined on K(Q) with a given conditioning function Xτ above, where K(Q)is the space of all complex valued continuous functions of two variables on Q which satify x(s, 0) = x(0, t) = 0 for every (s, t) ∈ Q. In particular we derive a useful equation which allows to calculate the conditional integral transform of the conditional convolution product without ever actually calculating convolution product or conditional convolution product.

MEASURE INDUCED BY THE PARTITION OF THE GENERAL REGION

  • Chang, Joo Sup;Kim, Byoung Soo
    • Korean Journal of Mathematics
    • /
    • 제21권3호
    • /
    • pp.237-246
    • /
    • 2013
  • In this paper we first consider the partition of the general region made by the monotonically increasing and continuous function and then obtain the measure from the partition of the region. The results obtained here is a little bit different from the previous results in [1, 2, 3] and finally we discuss the difference.

INTEGRAL TRANSFORMS OF FUNCTIONALS ON A FUNCTION SPACE OF TWO VARIABLES

  • Kim, Bong Jin;Kim, Byoung Soo;Yoo, Il
    • 충청수학회지
    • /
    • 제23권2호
    • /
    • pp.349-362
    • /
    • 2010
  • We establish the various relationships among the integral transform ${\mathcal{F}}_{{\alpha},{\beta}}F$, the convolution product $(F*G)_{\alpha}$ and the first variation ${\delta}F$ for a class of functionals defined on K(Q), the space of complex-valued continuous functions on $Q=[0,S]{\times}[0,T]$ which satisfy x(s, 0) = x(0, t) = 0 for all $(s,t){\in}Q$. And also we obtain Parseval's and Plancherel's relations for the integral transform of some functionals defined on K(Q).