THE REPRODUCING KERNEL OF HILBERT SPACE OF YEH-WIENER PROCESS

HONG-TAEK HWANG AND HEE-SOOK PARK

1. Introduction

Let $Q=[0,p]\times[0,q]$, where p and q are some fixed positive real numbers. Let $C_2[Q]$, called Yeh-Wiener space, denote the function space $\{x(\cdot,\cdot)|x(s,0)=x(0,t)=0,\ x(s,t)\ \text{is a real valued continuous function on }Q\}$ with the uniform norm $||x||=\max_{(s,t)\in Q}|x(s,t)|$. Let J be the algebra of all subsets of $C_2[Q]$ of the form

$$I = \{x \in C_2[Q] \mid (x(s_1, t_1), \dots, x(s_m, t_m)) \in E\}$$

where m and n are any positive integers, $0=s_0 < s_1 < \cdots < s_m=p$, $0=t_0 < t_1 < \cdots < t_n=q$ and E is an arbitrary Lebesgue measurable set in the mn-dimensional Euclidean space R^{mn} . Let $(C_2[Q], \mathscr{Y}, m_y)$, called the Yeh-Wiener measure space, denote the complete probability space where \mathscr{Y} is the σ -algebra of Caratheodory measurable subsets of $C_2[Q]$ with respect to the outer measure induced by the probability measure m_y on the algebra \mathscr{Y} defined for $I \in \mathscr{Y}$ by

$$m_{y}(I) = \prod_{j=1}^{m} \prod_{k=1}^{n} \{2\pi (s_{j} - s_{j-1}) (t_{k} - t_{k-1})\}^{-1/2} \cdot \int_{E} \exp\left\{-\frac{1}{2} \sum_{j=1}^{m} \sum_{k=1}^{n} \frac{(u_{j,k} - u_{j-1,k} - u_{j,k-1} + u_{j-1,k-2})^{2}}{(s_{j} - s_{j-1}) (t_{k} - t_{k-1})}\right\}$$

$$du_{11} \cdots du_{mn}$$

where $u_{0,k}=u_{j,0}=u_{0,0}=0$ $(j=1,2,\cdots,m,\ k=1,2,\cdots,n)$. (see [3]). Let Y be a real valued function on $Q\times C_2[Q]$ defined by

$$Y((s,t),x)=x(s,t)$$
 for $((s,t),x)\in Q\times C_2[Q]$.

Received July 2, 1988.

Then Y is a measurable stochastic process in the probability space $(C_2[Q], \mathscr{Y}, m_y)$ and the domain Q in which the space of sample functions $Y(\cdot, x)$, $x \in C_2[Q]$, coincides with the sample space $C_2[Q]$. This stochastic process will be referred to as the Yeh-Wiener process on the domain Q. It is shown from the definition of $(C_2[Q], \mathscr{Y}, m_y)$ that $Y((s, t), \cdot) \sim N(0, st)$ (i.e. normally distributed with mean 0 and variance st) and covariance of Yeh-Wiener process, $E^y(Y((s, t), \cdot) \cdot Y((u, v), \cdot)) = \min\{s, u\} \cdot \min\{t, v\}$ for every (s, t), $(u, v) \in Q$.

In this paper, we shall show that the function Γ defined on Q by

$$\Gamma((s,t), (u,v)) = E^{y}(Y(s,t), \cdot) Y((u,v), \cdot)$$
$$= \min\{s, u\} \min\{t, v\}$$

for every (s, t), $(u, v) \in Q$, is a covariance kernel on Q and then find a reproducing kernel Hilbert space (i.e. Yeh-Wiener process) of the covariance kernel Γ on Q. We next study some linear operator and the reproducing kernel of Hilbert space.

2. The reproducing kernel of Hilbert space of Yeh-Wiener process

In this section we find the reproducing kernel of Hilbert space of a covariance kernel defined on a rectangula $[0, p] \times [0, q]$ and then study some linear operators in the reproducing kernel of Hilbert space.

DEFINITION 2.1. Let T be a set and $\Gamma: T \times T \rightarrow \mathbf{R}$ be a real valued mapping satisfying

- (1) given $s, t \in T$, $\Gamma(s, t) = \Gamma(t, s)$, and
- (2) Γ is nonnegative definite i.e., for given $t_i \in T$, $a_j \in C$

$$j=1,2,\cdots,n, \sum_{i,k}\Gamma(t_i,t_k)a_i\bar{a}_k\geq 0.$$

Then $\Gamma(\cdot, \cdot)$ is called a covariance kernel on $T \times T$.

Let T be a separable metric space, and let $\Gamma(\cdot, \cdot)$ be a covariance kernel on $T \times T$. Define

$$V = \{\sum_{j=1}^{n} a_j \Gamma(t_j, \cdot) : a_j \in \mathbb{R}, t_j \in \mathbb{T}, j=1, 2, \dots, n\}$$

and the inner product $(\cdot, \cdot): V \times V \rightarrow R$ by

$$\left(\sum_{j=1}^n a_j \Gamma(t_j, \cdot), \sum_{k=1}^m b_k \Gamma(s_k, \cdot)\right) = \sum_{j=1}^n \sum_{k=1}^m a_j b_k \Gamma(t_j, s_k).$$

Then it is easy to see that (\cdot, \cdot) is an inner product on V. If $\{f_n\}$ is a sequence in V, then

$$|f_{n}(t)-f_{m}(t)|^{2} = |(f_{n}-f_{m}, \Gamma(t, \cdot))|^{2}$$

$$\leq (f_{n}-f_{m}, f_{n}-f_{m})(\Gamma(t, \cdot), \Gamma(t, \cdot))$$

$$= ||f_{n}-f_{m}||^{2}\Gamma(t, t),$$

where $(f, f) = ||f||^2$, $f \in V$. It follows that if $\{f_n\}$ is a Cauchy sequence with respect to the induced norm $||\cdot||$, then it is a pointwise Cauchy sequence. Let $H(\Gamma)$ denote the completion of $(V, ||\cdot||)$. This space $H(\Gamma)$ will be called the reproducing kernel Hilbert space of the covariance kernel $\Gamma(\cdot, \cdot)$ on $T \times T$.

THEOREM 2.2. [1] Let $\Gamma(\cdot, \cdot)$ be a covariance kernel on $T \times T$. Let $H = \{f : f : T \rightarrow R \text{ is a function}\}\$ be a Hilbert space with the inner product $(\cdot, \cdot)_H$. Suppose

- (1) $\Gamma(t,\cdot) \in H$, $t \in T$ and
- (2) $(f(\cdot), \Gamma(t, \cdot))_H = f(t), t \in T, f \in H.$

Then H is equal to $H(\Gamma)$ as Hilbert spaces.

THEOREM 2.3. For (s,t), $(u,v) \in [0,p] \times [0,q]$, let $\Gamma((s,t),(u,v)) = \min\{s,u\} \cdot \min\{t,v\}$. Then

- (1) Γ is a covariance kernel on $[0,p] \times [0,q]$.
- (2) $H(\Gamma) = \{f: f(s,t) = \int_0^t \int_0^s D^2 f(u,v) \ dudv \ and$ $\int_0^q \int_0^p [D^2 f(s,t)]^2 \ ds dt < \infty \}$

where $D^2 f(s,t) = \frac{\partial^2}{\partial_s \partial_t} f(s,t)$.

Proof. (1) For (s, t), $(u, v) \in [0, p] \times [0, q]$, we have $\Gamma((s, t), (u, v)) = \min\{s, u\} \cdot \min\{t, v\} = \Gamma((u, v), (s, t))$. Let $(s_i, t_i) \in [0, p] \times [0, q]$, $c_i \in C$, $i = 1, 2, \dots, n$. Then

$$\begin{split} &\sum_{i,j}^{n} c_{i}\bar{c}_{j} \Gamma\left((s_{i}, t_{i}), (s_{j}, t_{j})\right) = \sum_{i,j}^{n} c_{i}\bar{c}_{j}(s_{i} \wedge s_{j}) (t_{i} \wedge t_{j}) \\ &= \int_{0}^{q} \int_{0}^{p} \sum_{i,j}^{n} c_{i}\bar{c}_{j} \chi_{c_{0}, s_{i} 1}(s) \chi_{c_{0}, s_{j} 1}(s) \chi_{c_{0}, t_{i} 1}(t) \chi_{c_{0}, t_{j} 1}(t) ds dt \\ &= \int_{0}^{q} \int_{0}^{p} \sum_{i,j}^{n} c_{i}\bar{c}_{j} \frac{\partial^{2} \Gamma\left((s_{i}, t_{i}), (s, t)\right)}{\partial s \partial t} \frac{\partial^{2} \Gamma\left((s_{j}, t_{j}), (s, t)\right)}{\partial s \partial t} ds dt \end{split}$$

$$=\int_{0}^{q}\int_{0}^{p}\left|\sum_{i}^{n}c_{i}\frac{\partial^{2}\Gamma((s_{i},t_{i}),(s,t))}{\partial s\partial t}\right|^{2}dsdt\geqslant0.$$

Hence $\Gamma(\cdot, \cdot)$ is a covariance kernel on $T \times T$.

(2) For any $(s, t) \in [0, p] \times [0, q]$,

$$\frac{\partial}{\partial x}\Gamma((s,t), (x,y)) = (t \wedge y)\chi_{[0,s]}(x), x = s$$

and

$$\frac{\partial}{\partial y}\Gamma((s,t), (x,y)) = (s \wedge x) \chi_{\epsilon_0,\epsilon_2}(y), y = t.$$

It follows that

$$\Gamma((s,t), (x,y)) = (s \land x) (t \land y)$$

$$= \int_{0}^{y} \int_{0}^{x} D^{2} \Gamma((s,t), (u,v)) du dv.$$

$$\|\Gamma((s,t), (x,y))\|^{2} = \Gamma((s,t), (s,t)) = st$$

$$= \int_{0}^{q} \int_{0}^{p} [D^{2} \Gamma((s,t), (u,v))]^{2} du dv.$$

Let

$$f(x, y) = \sum_{i=1}^{n} c_{i} \Gamma((s_{i}, t_{i}), (x, y)).$$

Then we have

$$||f||^{2} = \sum_{j,k} c_{j} c_{k}(s_{j} \wedge s_{k}) (t_{j} \wedge t_{k})$$

$$= \int_{0}^{q} \int_{0}^{p} \sum_{j,k} c_{j} c_{k} [D^{2} \Gamma((s_{j}, t_{j}), (x, y))] [D^{2} \Gamma((s_{k}, t_{k}), (x, y))] dxdy$$

$$= \int_{0}^{q} \int_{0}^{p} [D^{2} f(x, y)]^{2} dxdy.$$

Let

$$H = \{f: f(u,v) = \int_0^v \int_0^u D^2 f(x,y) \ dxdy, \ \int_0^q \int_0^v [D^2 f(x,y)]^2 \ dxdy < \infty \}.$$

Now, for $f, g \in H$, define

$$(f,g) = \int_{0}^{q} \int_{0}^{p} D^{2}f(x,y) D^{2}g(x,y) dxdy.$$

Then it is easy to see that (\cdot, \cdot) is an inner product on H and that H is a Hilbert space with respect to (\cdot, \cdot) ; for $(s, t) \in [0, p] \times [0, q]$, clearly $\Gamma((s, t), (x, y)) \in H$ and

$$(f(\cdot,\cdot), \Gamma((s,t), (\cdot,\cdot)))$$

$$= \int_{0}^{q} \int_{0}^{b} D^{2} f(x,y) D^{2} \Gamma((s,t), (x,y)) dxdy$$

$$= \int_{0}^{q} \int_{0}^{b} D^{2} f(x,y) \chi_{[0,s]}(x) \chi_{[0,t]}(y) dxdy$$

$$= \int_{0}^{t} \int_{0}^{s} [D^{2} f(x,y)] dxdy$$

$$= f(s,t).$$

Therefore by Theorem 2.2, $H(\Gamma) = H$.

The following well-known fact is a version of integration by parts formula for functions of two variables.

LEMMA 2.4. Let f and g be real valued functions on $[0, p] \times [0, q]$. If f and g are in $H(\Gamma)$, then

$$\int_{0}^{q} \int_{0}^{p} [D^{2}f]gdsdt = f(p,q) - \int_{0}^{q} \frac{\partial g}{\partial t}(p,t)f(p,t)dt$$
$$- \int_{0}^{p} \frac{\partial g}{\partial s}(s,q)f(s,q)ds + \int_{0}^{q} \int_{0}^{p} [D^{2}g]fdsdt.$$

THEOREM 2.5. Let Γ and $H(\Gamma)$ be as in Theorem 2.3. Define an operator $S: H(\Gamma) \rightarrow H(\Gamma)$ by

$$Sf(s,t) = \int_0^t \int_0^s f(u,v) \ dudv.$$

Then S is a bounded linear operator and the adjoint operator S^* of S given by

$$S*f(s,t) = stf(p,q) - s \int_0^t f(p,v) dv - t \int_0^s f(u,q) du$$
$$+ \int_0^t \int_0^s f(u,v) du dv.$$

Proof. For $f \in H(\Gamma)$, then

$$\int_{0}^{v} \int_{0}^{u} D^{2}Sf(s,t)dsdt = \int_{0}^{v} \int_{0}^{u} \frac{\partial^{2}}{\partial s \partial t} \left[\int_{0}^{t} \int_{0}^{s} f(x,y)dxdy \right] dsdt$$
$$= \int_{0}^{v} \int_{0}^{u} f(s,t)dsdt.$$

Then S is well-defined. For $\alpha, \beta \in \mathbb{R}$ and $f, g \in H(\Gamma)$, we have

$$S(\alpha f + \beta g)(s, t) = \int_0^t \int_0^s (\alpha f + \beta g)(u, v) du dv$$

= $\alpha \int_0^t \int_0^s f(u, v) du dv + \beta \int_0^t \int_0^s g(u, v) du dv$
= $\alpha (Sf)(s, t) + \beta (Sg)(s, t)$.

Now we note that

$$||Sf||^2 = \int_0^q \int_0^p [D^2Sf(s,t)]^2 ds dt = \int_0^q \int_0^p [f(s,t)]^2 ds dt.$$

Hence by Hölder inequality,

$$||Sf||^2 \geqslant \int_0^q \int_0^p D^2 f(u, v) du dv \int_0^q \int_0^p ds dt$$

= $||f||_{pq}^2$.

Hence S is a bounded linear operator on $H(\Gamma)$. By Lemma 2.4,

$$(f, S_g) = \int_0^q \int_0^p D^2 f \cdot g ds dt.$$

$$= f(p, q) \int_0^q \int_0^p D^2 g ds dt - \int_0^q \left[\frac{\partial g(p, t)}{\partial t} \right] f(p, t) dt$$

$$- \int_0^p \left[\frac{\partial g(s, q)}{\partial s} \right] f(s, q) ds + \int_0^q \int_0^p D^2 g \cdot f ds dt.$$

Note that

$$\int_0^q \left[\frac{\partial g(p,t)}{\partial t} \right] f(p,t) dt = \int_0^q \int_0^p D^2 g(s,t) f(p,t) ds dt$$

and

$$\int_{0}^{p} \left[\frac{\partial g(s,q)}{\partial s} \right] f(s,q) ds = \int_{0}^{p} \int_{0}^{q} \left[\frac{\partial^{2} g(s,t)}{\partial t \partial s} \right] f(s,q) dt ds$$
$$= \int_{0}^{q} \int_{0}^{p} \left[\frac{\partial^{2} g(s,t)}{\partial s \partial t} \right] f(s,q) ds dt$$

$$\int_{0}^{q} \int_{0}^{p} D^{2} f \cdot g ds dt = \int_{0}^{q} \int_{0}^{p} D^{2} g [f(p,q) - f(p,t) - f(s,q) - f(s,t)] ds dt.$$

From the relation $(f, S_g) = (S^*f, g)$, we obtain

$$\int_{0}^{q} \int_{0}^{p} D^{2}g[f(p,q) - f(p,t) - f(s,q) + f(s,t)]dsdt$$

$$= \int_{0}^{q} \int_{0}^{p} D^{2}(S*f)D^{2}gdsdt$$

so that we have

$$D^{2}(S*f) = f(p,q) - f(p,t) - f(s,q) + f(s,t).$$

Hence the adjoint operator S* of S is given by

$$S*f(u,v) = \int_{0}^{v} \int_{0}^{u} D^{2}(S*f) ds dt$$

$$= \int_{0}^{v} \int_{0}^{u} [f(p,q) - f(p,t) - f(s,q) + f(s,t)] ds dt$$

$$= uvf(p,q) - u \int_{0}^{v} f(p,t) dt - v \int_{0}^{u} f(s,q) ds + \int_{0}^{v} \int_{0}^{u} f(s,t) ds dt.$$

THEOREM 2.6. Let A = S*S. Then A is a self-adjoint operator on $H(\Gamma)$ defined by

$$Af(s,t) = \int_{0}^{q} \int_{0}^{p} \min\{s,u\} \min\{t,v\} f(u,v) du dv.$$

Proof. For any $f \in H(\Gamma)$, we have

$$Af(s,t) = S*Sf(s,t)$$

$$= S*\left[\int_{0}^{t} \int_{0}^{s} f(u,v) du dv\right]$$

$$= \int_{0}^{t} \int_{0}^{s} \left[\int_{0}^{q} \int_{0}^{p} f(u,v) du dv - \int_{0}^{y} \int_{0}^{p} f(u,v) du dv\right]$$

$$- \int_{0}^{q} \int_{0}^{x} f(u,v) du dv + \int_{0}^{y} \int_{0}^{x} f(u,v) du dv\right] dx dy$$

$$= \int_{0}^{t} \int_{0}^{s} \left[\int_{y}^{q} \int_{0}^{p} f(u,v) du dv - \int_{y}^{q} \int_{0}^{x} f(u,v) du dv\right] dx dy$$

$$= \int_{0}^{t} \int_{0}^{s} \left[\int_{y}^{q} \int_{x}^{p} f(u,v) du dv\right] dx dy.$$

Now put

$$g(x,y) = \int_{y}^{q} \int_{x}^{p} f(u,v) du dv$$
 and $h(x,y) = xy$.

Then by Lemma 2.4, we have

$$Af(s,t) = \int_{0}^{t} \int_{0}^{s} g(x,y) dx dy$$

$$= stg(s,t) - \int_{0}^{s} \left[\frac{\partial g(p,y)}{\partial y} \right] h(p,y) dy$$

$$- \int_{0}^{p} \left[\frac{\partial g(x,q)}{\partial x} \right] h(x,q) dx + \int_{0}^{t} \int_{0}^{s} D^{2}g \cdot h dx dy$$

$$= st \int_{t}^{q} \int_{s}^{p} f(u,v) du dv - \int_{0}^{q} \left[\frac{\partial}{\partial y} \int_{y}^{q} \int_{p}^{p} f(u,v) du dv \right] py dy$$

$$- \int_{0}^{p} \left[\frac{\partial}{\partial x} \int_{q}^{q} \int_{x}^{p} f(u,v) du dv \right] qx dx$$

$$+ \int_{0}^{t} \int_{0}^{s} \left[\frac{\partial^{2}}{\partial x \partial y} \left(\int_{x}^{p} \int_{y}^{q} f(u,v) du dv \right] xy dx dy$$

$$= st \int_{t}^{q} \int_{s}^{p} f(u,v) du dv + \int_{0}^{t} \int_{0}^{s} xy f(x,y) dx dy$$

$$= \int_{0}^{q} \int_{0}^{p} \min\{s,x\} \min\{t,y\} f(x,y) dx dy.$$

COROLLARY 2.7. Let A be the operator as in Theorem 2.6. Then for $f,g \in H(\Gamma)$,

$$(f,A_{\mathfrak{g}}) = \int_{0}^{q} \int_{0}^{\mathfrak{p}} f(u,v)g(u,v) du dv.$$

Consequently, A is positive definite; i.e. $(Af, f) \geqslant 0$ for $f \in H(\Gamma)$.

Proof. Since A=S*S, we have

$$(f, Ag) = (Sf, Sg)$$

$$= \int_0^q \int_0^p D^2(Sf) D^2(Sg) ds dt$$

$$= \int_0^q \int_0^p f(s, t) g(s, t) ds dt.$$

References

- 1. J.D. Kuelbs, *Probability on Banach spaces*, Marcel Dekker, Inc. New York, (1978), 118-123.
- 2. J. Yeh, Stochastic process and the Wiener integral, Marcell Dekker, Inc. New York, 1973.
- 3. J. Yeh, Wiener measure in a space of functions of two variables, Trans, Amer. Math. Soc. 95(1960), 433-450.

Kum-Oh Institute of Technology Kumi 730-070, Korea and Sogang University Seoul 121-742, Korea