• Title/Summary/Keyword: Yeast cell-surface

Search Result 97, Processing Time 0.023 seconds

Screening of Non-Biogenic-Amine-Producing Bacillus subtilis and Medium Optimization for Improving Biomass by the Response Surface Methodology (바이오제닉 아민 비생성 Bacillus subtilis의 선별 및 반응표면 분석법에 의한 균체량 증가를 위한 배지 최적화)

  • Yang, Hee-Jong;Jeong, Su-Ji;Jeong, Seong-Yeop;Heo, Ju-Hee;Choi, Nack-Shick;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.26 no.5
    • /
    • pp.571-583
    • /
    • 2016
  • Biogenic amines are produced primarily by microorganisms found in fermented foods and are often implicated in poisoning incidents in humans. In this study, 620 strains of microorganisms were isolated from traditional Korean fermented food in Sunchang in order to screen for non-biogenicamine-producing microorganisms present in these foods. One strain was identified and named Bacillus subtilis SCJ1, by using 16S rRNA sequencing and biochemical characterization. We investigated the cell growth of this organism in order to understand its potential for industrial application. To this end, we optimized the culture medium constituents by using the response surface methodology. The Plackett-Burman experimental design was used for screening of the medium constituents, such as molasses, yeast extract and peptone, for improving cell growth. In order to determine the optimal concentration of each constituent, we used a central composite design. Consequently, the optimized concentrations of molasses, yeast extract and peptone were predicted to be 27.5 g/l, 7.5 g/l and 17.5 g/l, respectively. By model verification, we confirmed that a 1.49-fold increase in dry cell weight compared to the basal medium-from 1.32 g/l, to 1.9722 g/l-was achieved.

Possible Roles of LAMMER Kinase Lkh1 in Fission Yeast by Comparative Proteome Analysis

  • Cho, Soo-Jin;Kim, Young-Hwan;Park, Hee-Moon;Shin, Kwang-Soo
    • Mycobiology
    • /
    • v.38 no.2
    • /
    • pp.108-112
    • /
    • 2010
  • To investigate the possible roles of LAMMER kinase homologue, Lkh1, in Schizosaccharomyces pombe, whole proteins were extracted from wild type and lkh1-deletion mutant cells and subjected to polyacrylamide gel electrophoresis. Differentially expressed proteins were identified by tandem mass spectrometry (MS/MS) and were compared with a protein database. In whole-cell extracts, 10 proteins were up-regulated and 9 proteins were down-regulated in the mutant. In extracellular preparations, 6 proteins were up-regulated in the lkh1+ null mutant and 4 proteins successfully identified: glycolipid anchored surface precursor, $\beta$-glucosidase (Psu1), cell surface protein, glucan 1,3-$\beta$-glucosidase (Bgl2), and exo-1,3 $\beta$-glucanase (Exg1). These results suggest that Lkh1 is involved in regulating cell wall assembly.

Development of Descriptive Analysis Procedure for Evaluating the Sensory Characteristics of Yeast Leavened Breads (식빵의 관능적 특성 평가를 위한 묘사분석 절차 개발)

  • Lee, So-Yeon;Suh, Dong-Soon;Lee, Myung-Koo;Kim, Kwang-Ok
    • Journal of the Korean Society of Food Culture
    • /
    • v.20 no.1
    • /
    • pp.53-60
    • /
    • 2005
  • This study was conducted to develop the descriptive analysis procedures for evaluating the sensory characteristics of yeast leavened breads. Eleven highly trained panelists identified the following 23 sensory attributes in the bread and defined the terminology for each attribute; yellowness of crumb, roughness of surface, uniformity of cell, density of cell, brownness of crust for appearance characteristics, yeast fermented, chemical, roasted flour, buttery, milky, boiled flour, sweet, and salty for flavor characteristics, springiness, ease to tear, moistness on surface, adhesiveness to lip, hardness, stickiness, cohesiveness of mass, moisture absorption, chewiness, and loose particles for textural characteristics. Reference samples for the flavor attributes were determined. There were significant differences in all of the 23 sensory attributes of commercial bread samples. The principal component analysis (PCA) was performed to summarize the sensory data. The first two principal components explained 89% of the variation of the original variables indicating reliability of procedure developed in this study.

High-Cell-Density Fed-Batch Culture of Saccharomyces cerevisiae KV-25 Using Molasses and Corn Steep Liquor

  • Vu, Van Hanh;Kim, Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1603-1611
    • /
    • 2009
  • High-cell-density cultivation of yeast was investigated using the agricultural waste products corn steep liquor (CSL) and molasses. The Saccharomyces cerevisiae KV-25 cell mass was significantly dependent on the ratio between C and N sources. The concentrations of molasses and CSL in the culture medium were statistically optimized at 10.25% (v/v) and 16.87% (v/v), respectively, by response surface methodology (RSM). Batch culture in a 5-l stirred tank reactor using the optimized medium resulted in a cell mass production of 36.5 g/l. In the fed-batch culture, the feed phase was preceded by a batch phase using the optimized medium, and a very high dried-cell-mass yield of 187.63 g/l was successfully attained by feeding a mixture of 20% (v/v) molasses and 80% (v/v) CSL at a rate of 22 ml/h. In this system, the production of cell mass depended mainly on the agitation speed, the composition of the feed medium, and the glucose level in the medium, but only slightly on the aeration rate.

Expression and Secretion of Foreign Proteins in Yeast Using the ADH1 Promoter and 97 K Killer Toxin Signal Sequence

  • Hong, Seok-Jong;Kang, Hyen-Sam
    • BMB Reports
    • /
    • v.31 no.2
    • /
    • pp.123-129
    • /
    • 1998
  • Foreign proteins, $endo-{\beta}-1,4-glucanase$ of Bacillus subtilis, preS1+S2 region of hepatitis B virus large surface antigen, human ${\beta}_2-adrenergic$ receptor ($h{\beta}_{2}AR$), and bovine growth hormone (bGH) were expressed in Saccharomyces cerevisiae and secreted into the medium. These proteins were expressed using the alcohol dehydrogenase I (ADH1) promoter of Saccharomyces cerevisiae and secreted by signal sequence of the 97 K killer toxin gene of doublestranded linear DNA plasmid (pGKL1) of S. cerevisiae. All these proteins underwent severe modifications; in particular, N-glycosylation in the case of $endo-{\beta}-1,4-glucanase$, $h{\beta}_2AR$, and preS1+S2. Seventy four percent of the expressed $endo-{\beta}-1,4-glucanase$ was secreted into the culture medium. Highly modified proteins were detected in the culture medium and in the cell. Expressed $h{\beta}_2AR$, which has seven transmembrane domains, remained in the cell. The degrees of secretion and modification and the states of proteins in the culture medium and in the cell were quite different. These results indicated that the nature of the protein has a critical role in its secretion and modifications.

  • PDF

Screening of Biogenic Amine Non-Producing Yeast and Optimization of Culture Conditions Using Statistical Method for Manufacturing Black Raspberry Wine (복분자 와인 제조를 위한 바이오제닉 아민 비생성 효모의 선별 및 통계학적 기법을 이용한 배양조건 최적화)

  • Yang, Hee-Jong;Jeong, Su-Ji;Jeong, Seong-Yeop;Heo, Ju-Hee;Jeong, Do-Youn
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.4
    • /
    • pp.592-601
    • /
    • 2015
  • Rubus coreanus is known as Korean black raspberry, native to Korea, Japan, and China. Preliminary studies evaluating their potential for cancer treatment in mammalian test systems are ongoing. In recent years, interest has been renewed due to their high levels of anthocyanins. Anthocyanins in black raspberry are important due to their potential health benefits as dietary antioxidant, anti-inflammatory compound, and as a chemopreventive agent. In the present study, Saccharomyces cerevisiae BA29 was isolated from black raspberry fruit and fruit juice as a biogenic amine non-producing strain for manufacturing of black raspberry wine, after which we investigated its characteristics: biogenic amine-producing ability, cell growth ability, alcohol-fermentation ability, and resistance to alcohol, glucose, and sulfur dioxide. Based on preliminary experiments, we optimized culture medium compositions for improving dried cell weight of S. cerevisiae BA29 by response surface methodology (RSM) as a statistical method. Design for RSM used a central composite design, and molasses with the industrial applicability was used as a carbon source. Through statistical analysis, we obtained optimum values as follows: molasses 200 g/L, peptone 30 g/L, and yeast extract 40 g/L. For the model verification, we confirmed about 3-fold improvement of dried cell weight from 6.39 to 20.9167 g/L compared to basal yeast peptone dextrose medium. Finally, we manufactured black raspberry wine using S. cerevisiae BA29 and produced alcohol of 20.33%. In conclusion, S. cerevisiae isolated from black raspberry fruit and juices has a great potential in the fermentation of black raspberry wine.

IN VITRO STUDY ON THE ADHERENCE AND PENETRATION OF CANDIDA ALBICANS INTO DENTURE SOFT LINING MATERIALS (의치 연성이장재에 대한 Candida albicans의 부착과 침투연구)

  • Kim Min-Ju;Shin Sang-Wan;Lee Jeong-Yeol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.4
    • /
    • pp.466-476
    • /
    • 2006
  • Purpose : Colonization of denture soft lining materials by Candida albicans can result in clinical problem, and deterioration of the materials. This study aimed to compare the retention and penetration of C. albicans into four denture soft lining materials commonly used. Materials and methods : Four denture soft lining materials (Coe-comfort$^{(R)}$, Coe-soft$^{(R)}$, GC soft liner$^{(R)}$, and Tissue conditioner$^{(R)}$) discs were prepared to glass slide and dental stone. Adherence of yeast to surfaces was monitored after one hour incubation of standardized washed cell suspension with test disc surfaces. Adherent cells stained with acridine orange were counted fluorescence microscopy. Penetration of yeast into materials bonded with acrylic resin after 1, 2, 3,4, 5, 6 and 7 days incubation was observed through sections stained using acridine orange and estimated to quantitative analysis using radioisotope. Results : There was statistical significance in cell numbers between smooth and rough surfaces(p<0.05). Higher numbers of cells were observed on rough surfaces. There was statistical significance in adherent cell numbers into smooth and rough surfaces individually(p<0.05). According to the increase of incubation periods, the cells penetrated into denture soft lining materials were shown to increase. The differences among all kinds of soft liner were statistically significant(p<0.05),and the largest number of cells penetrated into soft liners was observed in the Coe-soft$^{(R)}$. Conclusion : Initial adherence and penetration of yeast into denture soft lining materials has been influenced by surface roughness and chemical composition of them. The selection of appropriate materials and their fabrication may promote clinical performance.

Study of Sugarcane Pieces as Yeast Supports for Ethanol Production from Sugarcane Juice and Molasses Using Newly Isolated Yeast from Toddy Sap

  • Babu, Neerupudi Kishore;Satyanarayana, Botcha;Balakrishnan, Kesavapillai;Rao, Tamanam Raghava;Rao, Gudapaty Seshagiri
    • Mycobiology
    • /
    • v.40 no.1
    • /
    • pp.35-41
    • /
    • 2012
  • A repeated batch fermentation system was used to produce ethanol using $Saccharomyces$ $cerevisiae$ strain (NCIM 3640) immobilized on sugarcane ($Saccharum$ $officinarum$ L.) pieces. For comparison free cells were also used to produce ethanol by repeated batch fermentation. Scanning electron microscopy evidently showed that cell immobilization resulted in firm adsorption of the yeast cells within subsurface cavities, capillary flow through the vessels of the vascular bundle structure, and attachment of the yeast to the surface of the sugarcane pieces. Repeated batch fermentations using sugarcane supported biocatalyst were successfully carried out for at least ten times without any significant loss in ethanol production from sugarcane juice and molasses. The number of cells attached to the support increased during the fermentation process, and fewer yeast cells leaked into fermentation broth. Ethanol concentrations (about 72.65-76.28 g/L in an average value) and ethanol productivities (about 2.27-2.36 g/L/hr in an average value) were high and stable, and residual sugar concentrations were low in all fermentations (0.9-3.25 g/L) with conversions ranging from 98.03-99.43%, showing efficiency 91.57-95.43 and operational stability of biocatalyst for ethanol fermentation. The results of the work pertaining to the use of sugarcane as immobilized yeast support could be promising for industrial fermentations.

Improvement of Anthocyanin Encapsulation Efficiency into Yeast Cell by Plasmolysis, Ethanol, and Anthocyanin Concentration Using Response Surface Methodology

  • Dong, Lieu My;Hang, Hoang Thi Thuy;Tran, Nguyen Huyen Nguyet;Thuy, Dang Thi Kim
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.267-275
    • /
    • 2020
  • Anthocyanins are antioxidant compounds susceptible to environmental factors. Anthocyanin encapsulation into yeast cells is a viable solution to overcome this problem. In this study, the optimal factors for anthocyanin encapsulation were investigated, including anthocyanin concentration, plasmolysis contraction agent, and ethanol concentration, and response surface methodology was evaluated, for the first time. Anthocyanin from Hibiscus sabdariffa L. flowers was encapsulated into Saccharomyces cerevisiae using plasmolysis contraction agent (B: 3%-20% w/v), ethanol concentration (C: 3%-20% v/v), and anthocyanin concentration (A: 0.15-0.45 g/ml). The encapsulation yield and anthocyanin loss rate were determined using a spectrometer (520 nm), and color stability evaluation of the capsules was performed at 80℃ for 30 min. The results of the study showed that these factors have a significant impact on the encapsulation of anthocyanin, in which ethanol agents have the highest encapsulation yield compared to other factors in the study. Statistical analysis shows that the independent variables (A, B, C), their squares (A2, B2, C2), and the interaction between B and C have a significant effect on the encapsulation yield. The optimized factors were anthocyanin, 0.25 g/ml; NaCl, 9.5% (w/v); and ethanol, 11% (v/v) with an encapsulation yield of 36.56% ± 0.55% and anthocyanin loss rate of 15.15% ± 0.98%; This is consistent with the expected encapsulation yield of 35.46% and loss rate of 13.2%.

Bioproduction and Anticancer Activity of Biosurfactant Produced by the Dematiaceous Fungus Exophiala dermatitidis SK80

  • Chiewpattanakul, Paramaporn;Phonnok, Sirinet;Durand, Alain;Marie, Emmanuelle;Thanomsub, Benjamas Wongsatayanon
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1664-1671
    • /
    • 2010
  • A new biosurfactant producer was isolated from palm-oil-contaminated soil and later identified through morphology and DNA sequencing as the yeast-like fungus Exophiala dermatitidis. Biosurfactant production was catalyzed by vegetable oil, supplemented with a basal medium. The culture conditions that provided the biosurfactant with the highest surface activity were found to be 5% palm oil with 0.08% $NH_4NO_3$, at a pH of 5.3, with shaking at 200 rpm, and a temperature of $30^{\circ}C$ for a 14-day period of incubation. The biosurfactant was purified, in accordance with surfactant properties, by solvent fractionation using silica gel column chromatography. The chemical structure of the strongest surface-active compound was elucidated through the use of NMR and mass spectroscopy, and noted to be monoolein, which then went on to demonstrate antiproliferative activity against cervical cancer (HeLa) and leukemia (U937) cell lines in a dose-dependent manner. Interestingly, no cytotoxicity was observed with normal cells even when high concentrations were used. Cell and DNA morphological changes, in both cancer cell lines, were observed to be cell shrinkage, membrane blebbling, and DNA fragmentation.