• Title/Summary/Keyword: Yaw-checking

Search Result 13, Processing Time 0.021 seconds

A Simulator Study on Yaw-checking and Coursekeeping Ability in IMO's Ship Manoeuvrability Standards

  • Sohn, Kyoung-Ho;Yang, Seung-Yeul;Lee, Dong-Sub
    • Journal of Ship and Ocean Technology
    • /
    • v.6 no.3
    • /
    • pp.26-36
    • /
    • 2002
  • Yaw-checking and course-keeping ability in IMO's ship rnanoeuvrability standards is reviewed from the viewpoint of safe navigation. Three kinds of virtual series-ships, which have different course instability, are taken as test models. The numerical simulation on Z-test is carried out in order to examine the correlation between known manoeuvrability in spiral characteristics and various kinds of overshoot angle. Then simulator experiments are executed with series-ships in a curved, narrow waterway by five pilots in order to examine the correlation between known manoeuvrability and degree of manoeuvring difficulty. IMO criteria for yaw-checking and course-keeping ability are discussed and new criteria are proposed.

A Study on Yaw-checking and Course-keeping Ability of Directionally Unstable Ships

  • Sohn, Kyoung-Ho;Yang, Seung-Yeul;Lee, Dong-Sub;Bae, Jun-Young
    • Journal of Navigation and Port Research
    • /
    • v.27 no.6
    • /
    • pp.631-638
    • /
    • 2003
  • Yaw-checking and course-keeping ability in IMO's ship manoeuvrability standards are reviewed from the viewpoint of safe navigation. Three kinds of virtual series-ships, which have different course instability, are taken as test models. The numerical simulation on Z-test is carried out in order to examine the correlation between known manoeuvrability in spiral characteristics and various kinds of overshoot angle. Then simulator experiments are executed with series-ships in a curved, narrow waterway by six operators(five active pilots and one ex-captain) in order to examine the correlation between known manoeuvrability and degree of manoeuvring difficulty. IMC criteria for yaw-checking and course-keeping ability are discussed and revised criteria are proposed.

A Simulator Study on Yaw-checking and Course-keeping Ability of Directionally Unstable Ships (침로불안정한 선학의 변침 및 보침 성능에 관한 시뮬레이터 연구)

  • Sohn Kyoungho;Lee Dongsub
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.11a
    • /
    • pp.141-148
    • /
    • 2003
  • Yaw-checking and course-keeping ability in IMO's ship manoeuvrability standards is reviewed from the viewpoint cf sole navigation Three kinds of virtual series-ships, which have different course instability, are taken as test models. The numerical simulation on Z-test is carried out in order to examine the correlation between known manoeuvrability in spiral characteristics and various kinds of overshoot angle. Then simulator experiments are executed with series-ships in a curoed, narrow waterway by six operators(five active pilots and one ex-captain) in order to examine the correlation between known manoeuvrability and degree of manoeuvring difficulty. IMO criteria for yaw-checking and course-keeping ability are discussed and revised criteria are proposed.

  • PDF

선박의 조종성능과 조종곤란도의 상관관계 분석을 위한 협수로 항행 실시간 시뮬레이션

  • 손경호;양승렬;김용민;배준영;김진국;이동섭
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2002.05a
    • /
    • pp.3-10
    • /
    • 2002
  • Yaw-checking and course-keeping ability in IMO's ship manoeuvrability standards is reviewed from the viewpoint of safe operation. Three types of assumed series-ships, which have systematically different instability on course, are taken as tested models. The numerical simulation on Z-test is carried out in order to examine the correlation between known manoeuvrability and various kinds of overshoot angle. Then simulator experiments are executed with series-ships in situation of curved, narrow of waterway by five pilots in order to examine the correlation between known manoeuvrability and degree of manoeuvring difficulty. Three kinds of IMO's criterion concerning yaw-checking and course-keeping ability are discussed and new criteria are proposed.

  • PDF

Maneuvering character of hull form renovated tuna purse seiner (선형개조 선망선의 조종성능)

  • Hong, Jin-Keun;Kang, Il-Kwon;Jeong, Seong-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.1
    • /
    • pp.61-70
    • /
    • 2015
  • In an attempt to improve the maneuvering character of hull form renovated tuna purse seiner. A renovation was carried out on the 3 tuna purse seiner fishing vessel. To grasp the progress of maneuvering and resistance on ship B (730 ton class), new bulbous bow was only attached. The ship A (740 ton class) and C (600 ton class) were modified for new bulbous bow, enlarged slipway and rudder. And then the zigzag and the turning test were carried out. According to the turning test, the advance and the tactical diameter were improved very much for the modified ship. The sea trial was carried out for the original and modified ship A. It is showed that the results of sea trial corresponded with that of the tank test on the whole. In the result of the zigzag test on ship B, the turning ability was improved very much, but the yaw checking ability was deteriorated in just some degree. In the result of the zigzag test on ship C, the turning ability and yaw checking ability were remarkably improved. Ship C was greatly improved among the three ships for the maneuvering character of modified hull form.

Enhancing Accuracy of Multi-drone Localization in Indoor Environment (실내 환경에서의 다수 드론 위치측정 정확도 향상 기법)

  • Phuong, Chu;Nguyen, Trong Hieu;Park, Yong Woon;Kim, Junoh;Cho, Kyungeun
    • Annual Conference of KIPS
    • /
    • 2016.10a
    • /
    • pp.697-698
    • /
    • 2016
  • In this paper, we propose a novel approach to improve the accuracy for multiple low-cost drones in indoor environment. When the drones are flying, we employ sensors for checking their position in real-time. If the drones move out of their correct positions, the corresponding instructions are sent immediately. In another thread, we calibrate direction of the drones by checking yaw value. The adjustment is repeated until the drones locate at right position and direction.

Implementation of Mobile Robot Platform Based on Attitude Reference System for Pan-tilt Camera Control (팬틸트 카메라 제어를 위한 자세측정 장치 기반 이동로봇플랫폼 구현)

  • Park, Se-Jun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.201-206
    • /
    • 2016
  • Aircraft have a cross axis of the three each other for maintenance of aircraft position. It is called roll axis, pitch axis and yaw axis. Attitude reference system is a sensor for detecting a change of the three axis. In this paper, mobile robot platform install part of Pan-tilt and HMD attitude reference system, because of we use control camera. The acceleration sensor is very weak a lot of noise to vibration, also problem with data from process of mapping to the data problems to arise. However to solve this problem, we removed the average filter and Cosine Interpolation for Pan-tilt. Using capacity evaluation for outdoor environment for we are proposing. Mobile robot has HMD and equipped Pan-tilt. We control mobile robot camera. In this experiment result is little bit delay happening, however Pan-tilt camera is relatively stable control checking. Also, we will checking any terrain and slopes is no problem for mobile robot driving skills.

Prediction Method for Linear Maneuvering Hydrodynamic Derivatives Using Slender Body Theory Based on RANS (RANS 기반의 세장체 이론을 이용한 선형 조종 유체력 미계수 추정에 관한 연구)

  • Lee, Sungwook
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.340-345
    • /
    • 2017
  • It is important to predict the hydrodynamic maneuvering derivatives, which consist of the forces and moment acting on a hull during a maneuvering motion, when estimating the maneuverability of a ship. The estimation of the maneuverability of a ship with a change in the stern hull form is often performed at the initial design stage. In this situation, a method that can reflect the change in the hull form is necessary in the prediction of the maneuverability of the ship. In particular, the linear hydrodynamics maneuvering derivatives affect the yaw checking motion as the key factors. In the present study, static drift calculations were performed using Computational Fluid Dynamics (CFD) based on Reynolds Average Navier-Stokes (RANS) for a 40-segment hull. A prediction method for the linear hydrodynamic maneuvering derivatives was proposed using the slender body theory from the distribution of the lateral force acting on each segment of the hull. Moreover, the results of a comparison study to the model experiment for KVLCC1 performed by KRISO are presented in order to verify the accuracy of the static drift calculation. Finally, the linear hydrodynamic maneuvering derivatives obtained from both the model test and calculation are compared and presented to verity the usefulness of the method proposed in this study.

Analysis of the dynamic characteristics for the change of design parameters of an underwater vehicle using sensitivity analysis

  • Jeon, Myungjun;Yoon, Hyeon Kyu;Hwang, Junho;Cho, Hyeon Jin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.4
    • /
    • pp.508-519
    • /
    • 2018
  • In order to design the hull form of an underwater vehicle in the conceptual design phase, the dynamic characteristics depending on the hull form parameters should be identified. Course-keeping stability, turning ability, yaw-checking ability, and mission competence are set to be the indices of the dynamic characteristics, and the geometric parameters for the bare hull and rudder are set to be the hull form design parameters. The total sensitivity of the dynamic characteristics with respect to the hull form parameters is calculated by the chain rule of the partial sensitivity of the dynamic characteristics with respect to the hydrodynamic coefficients, and the partial sensitivity of the hydrodynamic coefficients with respect to the hull form parameters. Based on the sensitivity analysis, important hull form parameters are selected, and those optimal values to satisfy the required intercept time of mission competence of a specific underwater vehicle and turning rate are estimated.

Estimation of the manoeuvrability of the KVLCC2 in calm water using free running simulation based on CFD

  • Kim, In-Tae;Kim, Cheolho;Kim, Sang-Hyun;Ko, Donghyeong;Moon, Seong-Ho;Park, Hwanghi;Kwon, Jaewoong;Jin, Bongyong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.466-477
    • /
    • 2021
  • There are three different well-known methods for predicting the manoeuvrability of ships: (1) free running model test, (2) direct manoeuvring simulation using CFD and (3) system-based manoeuvring simulation. In this paper, the manoeuvrability of the KVLCC2 was estimated using CFD with rigid body motion and body force propeller method. The free running manoeuvre at the different time steps were also simulated. The yaw checking ability and the turning ability of KVLCC2 were predicted using CFD and could have been confirmed that the IMO criteria was satisfied. When the results were compared with the model test and system-based method, the free running simulation showed better agreement to that of the model test. It could also be confirmed that the results vary depending on the time step. Overall, the CFD results using the body force propeller method estimated most accurately the test results.