• 제목/요약/키워드: Xi

검색결과 2,159건 처리시간 0.033초

$\xi\sum{0}$ 등급에서의 동치문제 연구 (A Study of the Equivalence Problem in $\xi\sum{0}$ Class)

  • Dong-Koo Choi;Sung-Hwan Kim
    • 한국컴퓨터산업학회논문지
    • /
    • 제2권10호
    • /
    • pp.1301-1308
    • /
    • 2001
  • 이 논문에서는 기존의 number-theoretic 순환함수와 연계된 word-theoretic 순환함수 및 술어(predicates)들의 Grzegorzyk 클래스를 논한다. 특히 small 클래스 $\xi\sum{n}$($n\leq2$)에서의 특성은 그에 대응하는 number-theoretic small 클래스 $\xi\sum{n}$과는 매우 틀린 특성을 보인다 [2]. 흥미 있는 문제 중의 하나인 $\xi\sum{0}$ 등급에서의 동치문제는 undecidable 임을 증명한다.

  • PDF

CHARACTERIZATIONS OF REAL HYPERSURFACES OF TYPE A IN A NONFLAT COMPLEX SPACE FORM WHOSE STRUCTURE JACOBI OPERATOR IS ξ-PARALLEL

  • Kim, Nam-Gil
    • 호남수학학술지
    • /
    • 제31권2호
    • /
    • pp.185-201
    • /
    • 2009
  • Let M be a real hypersurface with almost contact metric structure $({\phi},{\xi},{\eta},g)$ of a nonflat complex space form whose structure Jacobi operator $R_{\xi}=R({\cdot},{\xi}){\xi}$ is ${\xi}$-parallel. In this paper, we prove that the condition ${\nabla}_{\xi}R_{\xi}=0$ characterize the homogeneous real hypersurfaces of type A in a complex projective space $P_n{\mathbb{C}}$ or a complex hyperbolic space $H_n{\mathbb{C}}$ when $g({\nabla}_{\xi}{\xi},{\nabla}_{\xi}{\xi})$ is constant.

CHARACTERIZATIONS OF REAL HYPERSURFACES OF TYPE A IN A COMPLEX SPACE FORM USED BY THE ζ-PARALLEL STRUCTURE JACOBI OPERATOR

  • Kim, Nam-Gil;Ki, U-Hang;Kurihara, Hiroyuki
    • 호남수학학술지
    • /
    • 제30권3호
    • /
    • pp.535-550
    • /
    • 2008
  • Let M be a real hypersurface of a complex space form with almost contact metric structure $({\phi},{\xi},{\eta},g)$. In this paper, we study real hypersurfaces in a complex space form whose structure Jacobi operator $R_{\xi}=R({\cdot},{\xi}){\xi}$ is ${\xi}$-parallel. In particular, we prove that the condition ${\nabla}_{\xi}R_{\xi}=0$ characterize the homogeneous real hypersurfaces of type A in a complex: projective space $P_n{\mathbb{C}}$ or a complex hyperbolic space $H_n{\mathbb{C}}$ when $g({\nabla}_{\xi}{\xi},{\nabla}_{\xi}{\xi})$ is constant and not equal to -c/24 on M, where c is a constant holomorphic sectional curvature of a complex space form.

APPROXIMATE CONTROLLABILITY FOR NONLINEAR INTEGRODIFFERENTIAL EQUATIONS

  • Choi, J.R.;Kwun, Y.C.;Sung, Y.K.
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제2권2호
    • /
    • pp.173-181
    • /
    • 1995
  • Our objective is to investigate approximate controllability of a class of partial integrodifferential systems. This work continuous the investigations of [8]. As a model for this class one may take the equation $\frac{\partialy(t,\;\xi)}{\partialt}\;=\;\frac{\partial}{\partial\xi}(a(t,\;\xi\frac{\partialy(t,\;\xi)}{\partial\xi})\;+\;F(t,\;y(t\;-\;r,\;\xi),\;{{\int_0}^t}\;k(t,\;s,\;y(s\;-\;r,\;\xi))ds)\;+\;b(\xi)u(t),\;0\;\leq\;\xi\;\leq\;1,\;\leq\;t\;\leq\;T$ with initial-boundary conditions y(t,\;0)\;=\;y(t,\;1)\;=\;0,\;0\;\leq\;t\;\leq\;T,\;y(t,\;\xi)\;=\;\phi(t,\;\xi),\;0\;\leq\;1,\;-r\;\leq\;t\;\leq\;0$.(omitted)

  • PDF

JACOBI OPERATORS ALONG THE STRUCTURE FLOW ON REAL HYPERSURFACES IN A NONFLAT COMPLEX SPACE FORM II

  • Ki, U-Hang;Kurihara, Hiroyuki
    • 대한수학회보
    • /
    • 제48권6호
    • /
    • pp.1315-1327
    • /
    • 2011
  • Let M be a real hypersurface of a complex space form with almost contact metric structure (${\phi}$, ${\xi}$, ${\eta}$, g). In this paper, we study real hypersurfaces in a complex space form whose structure Jacobi operator $R_{\xi}=R({\cdot},\;{\xi}){\xi}$ is ${\xi}$-parallel. In particular, we prove that the condition ${\nabla}_{\xi}R_{\xi}=0$ characterizes the homogeneous real hypersurfaces of type A in a complex projective space or a complex hyperbolic space when $R_{\xi}{\phi}S=R_{\xi}S{\phi}$ holds on M, where S denotes the Ricci tensor of type (1,1) on M.

FIRST PASSAGE PROBLEM FOR WIENER PATHS CROSSING DIFFERENTIABLE CURVES

  • Jang, Yu-Seon;Kim, Sung-Lai;Kim, Sung-Kyun
    • Journal of applied mathematics & informatics
    • /
    • 제19권1_2호
    • /
    • pp.475-484
    • /
    • 2005
  • Let W(t) be a Wiener path, let $\xi\;:\;[0,\;{\infty})\;\to\;\mathbb{R}$ be a continuous and increasing function satisfying $\xi$(0) > 0, let $$T_{/xi}=inf\{t{\geq}0\;:\;W(t){\geq}\xi(t)\}$$ be the first-passage time of W over $\xi$, and let F denote the distribution function of $T_{\xi}$. Then the first passage problem has a unique continuous solution as following $$F(t)=u(t)+{\sum_{n=1}^\infty}\int_0^t\;H_n(t,s)u(s)ds$$, where $$u(t)=2\Psi(\xi(t)/\sqrt{t})\;and\;H_1(t,s)=d\Phi\;(\{\xi(t)-\xi(s)\}/\sqrt{t-s})/ds\;for\;0\;{\leq}\;s.

RADIUS CONSTANTS FOR FUNCTIONS ASSOCIATED WITH A LIMACON DOMAIN

  • Cho, Nak Eun;Swaminathan, Anbhu;Wani, Lateef Ahmad
    • 대한수학회지
    • /
    • 제59권2호
    • /
    • pp.353-365
    • /
    • 2022
  • Let 𝓐 be the collection of analytic functions f defined in 𝔻 := {ξ ∈ ℂ : |ξ| < 1} such that f(0) = f'(0) - 1 = 0. Using the concept of subordination (≺), we define $$S^*_{\ell}\;:=\;\{f{\in}A:\;\frac{{\xi}f^{\prime}({\xi})}{f({\xi})}{\prec}{\Phi}_{\ell}(\xi)=1+{\sqrt{2}{\xi}}+{\frac{{\xi}^2}{2}},\;{\xi}{\in}{\mathbb{D}}\}$$, where the function 𝚽(ξ) maps 𝔻 univalently onto the region Ω bounded by the limacon curve (9u2 + 9v2 - 18u + 5)2 - 16(9u2 + 9v2 - 6u + 1) = 0. For 0 < r < 1, let 𝔻r := {ξ ∈ ℂ : |ξ| < r} and 𝒢 be some geometrically defined subfamily of 𝓐. In this paper, we find the largest number 𝜌 ∈ (0, 1) and some function f0 ∈ 𝒢 such that for each f ∈ 𝒢 𝓛f (𝔻r) ⊂ Ω for every 0 < r ≤ 𝜌, and $${\mathcal{L} _{f_0}}({\partial}{\mathbb{D}_{\rho})\;{\cap}\;{\partial}{\Omega}_{\ell}\;{\not=}\;{\emptyset}$$, where the function 𝓛f : 𝔻 → ℂ is given by $${\mathcal{L}}_f({\xi})\;:=\;{\frac{{\xi}f^{\prime}(\xi)}{f(\xi)}},\;f{\in}{\mathcal{A}}$$. Moreover, certain graphical illustrations are provided in support of the results discussed in this paper.

Crystal Structure and Functional Characterization of a Xylose Isomerase (PbXI) from the Psychrophilic Soil Microorganism, Paenibacillus sp.

  • Park, Sun-Ha;Kwon, Sunghark;Lee, Chang Woo;Kim, Chang Min;Jeong, Chang Sook;Kim, Kyung-Jin;Hong, Jong Wook;Kim, Hak Jun;Park, Hyun Ho;Lee, Jun Hyuck
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권2호
    • /
    • pp.244-255
    • /
    • 2019
  • Xylose isomerase (XI; E.C. 5.3.1.5) catalyzes the isomerization of xylose to xylulose, which can be used to produce bioethanol through fermentation. Therefore, XI has recently gained attention as a key catalyst in the bioenergy industry. Here, we identified, purified, and characterized a XI (PbXI) from the psychrophilic soil microorganism, Paenibacillus sp. R4. Surprisingly, activity assay results showed that PbXI is not a cold-active enzyme, but displays optimal activity at $60^{\circ}C$. We solved the crystal structure of PbXI at $1.94-{\AA}$ resolution to investigate the origin of its thermostability. The PbXI structure shows a $({\beta}/{\alpha})_8$-barrel fold with tight tetrameric interactions and it has three divalent metal ions (CaI, CaII, and CaIII). Two metal ions (CaI and CaII) located in the active site are known to be involved in the enzymatic reaction. The third metal ion (CaIII), located near the ${\beta}4-{\alpha}6$ loop region, was newly identified and is thought to be important for the stability of PbXI. Compared with previously determined thermostable and mesophilic XI structures, the ${\beta}1-{\alpha}2$ loop structures near the substrate binding pocket of PbXI were remarkably different. Site-directed mutagenesis studies suggested that the flexible ${\beta}1-{\alpha}2$ loop region is essential for PbXI activity. Our findings provide valuable insights that can be applied in protein engineering to generate low-temperature purpose-specific XI enzymes.

Jacobi Operators with Respect to the Reeb Vector Fields on Real Hypersurfaces in a Nonflat Complex Space Form

  • Ki, U-Hang;Kim, Soo Jin;Kurihara, Hiroyuki
    • Kyungpook Mathematical Journal
    • /
    • 제56권2호
    • /
    • pp.541-575
    • /
    • 2016
  • Let M be a real hypersurface of a complex space form with almost contact metric structure (${\phi}$, ${\xi}$, ${\eta}$, g). In this paper, we prove that if the structure Jacobi operator $R_{\xi}= R({\cdot},{\xi}){\xi}$ is ${\phi}{\nabla}_{\xi}{\xi}$-parallel and $R_{\xi}$ commute with the structure tensor ${\phi}$, then M is a homogeneous real hypersurface of Type A provided that $TrR_{\xi}$ is constant.