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ABSTRACT

n
In this paper, some interesting aspects of Grzegorczyk classes 3 >,n >0 & 3= {1, 2 } of word-

theoretic primitive recursive functions are observed including the classes of its corresponding predicates
(¢ 3)'. In particular, the small classes 3 E (n < 2) are very incomparable to the corresponding small
classes € ! where € ! is the number-theoretic Grzegorczyk classes. As one of some interesting aspects of
the small classes, we show that the equivalence problem in 3 % is undecidable.
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1. Introduction and Some Definitions

In [1], [S] and [6] primitive recursive word- Throughout this paper, Grzegorczyk classes of
theoretic functions and predicates are well defined. word-theoretic functions and predicates will be
In particular, Asser shows that the class of the focused.

primitive recursive  word-theoretic  functions s
essentially the same as that of the primitive
recursive number-theoretic functions when word-
theoretic functions are naturally interpreted in
"number- theoretic” terms[1].
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1.1 Definition

We shall denote by >* the set of all words (or
strings ), including the empty string A, over an
alphabet >;. >+ denotes X* - {A}.

A word-theoretic function £ % is % (I%)* —
>* for some k > 1. //

Throughout this paper, we restrict our attention to
the alphabet >={1, 2} for simplicity, since most
properties we deal with are alphabet invariant for an
alphabet with more than one element. Moreover in
string manipulation it will be more convenient to
interpret words in the number-theoretic terms by
means of the dyadic notation.

1.2 Definition

The function ¢ : >* — N, which denotes the
numerical interpretation of a word, is defined as
follows:

an) =0

axl) =1+2 + aX
ax2) =2 +2 ¢ ax) ./

It is easy to see that the function @ is bijective.

Now let x€ Z‘+ be
x= @y dg_q -+ a; a, where aiEZ‘+,

0<i<k

Clearly, o(x) = 2ag +2- a;+ -« + 2°%.
a i by the above definition.

Conversely, under the dyadic notation each
positive integer n is represented by a unique string

+
X= 8, @,_; « a; 8, €X such that

= ,2=0 a;.-9 ! for some k > 0.

Since a(x) = n, without ambiguity we shall view
each n € N as both a number

and a string - the latter being the numeral value
of x ie. ax).

Similarly each word-theoretic function f % (Z*) —
>* corresponds to a unique number-theoretic function
f:N— Nsuch tht fm) = « (f% (' ().
Hence, hereafter, we shall drop the superscript > and
denote both by f(x).

For instance, A,[x +1] is meaningful even for x
€Y% ; in that case AJa@' (ax) + D] is
understood. In English: “given a string x first
interpret as number and add one. Return the
dyadic notation of the result; ie. return a

string”.

We shall now define word-theoretic operations
over functions.

Primitive recursion on_notation

Let the function g, hy, hy be given. We say that
a function f is defined from g, hj, hy by primitive
recursion on notation if and only if for all 'x, y

f(x, A) = g(x)

f(x yD) = h(x 5 f(x y)

f(x y2) = hox,y f( % y) where x =

(Xl, X, vy Xn), //

Let’s consider the

def . .
= xifor ix ). The si(x) = ix(resp. xi) is

called the i-th right successor (resp. the i-th Ileft
successor). It is easy to see that the successor
function
recursion on mnotation.

successor  function S ;(x)

Si(x) is right (resp. left) primitive

We will see that left and right primitive
recursion on notation are equivalent under some
reasonable assumptions. We proceed for a while
with right recursion on notation.
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1.3 Definition
Primitive Recursive Word-theoretic function (PRW)

PRW is the smallest class containing the initial
functions:
z(x) = A, s i(x) = x1, S o(x) = x2,
Uy (0= X,
and being closed under the following operations:
(A) composition
(B) primitive recursion on notation.//

def
Example. The function conc(x, y) = xy =

“concatenation of x and y” is in PRW since the
function can be obtained from primitive recursion
on notation, i. e.
conc(x, A) = Ul
3
COIIC(X, )’1) = S l( U S(X’ Y, COIIC(X, }’)))

cone(x, y2) = so U3 (x, y, conc(x, y))) . /i

The above example is equivalent to the following

scheme:
conc(x, A) = x
conc(x, yl) = s i(conc(x, y))

conc(x, y2) = S (conc(x, y)).

Word-theoretic Grzegorczyk hierarchy of

primitive recursive functions

We shall introduce the word-theoretic Grzegorczyk
hierarchy defined in [S]. Before doing this, we shall
define a sequence of “growth functions” on the strings
and the notion of "limited recursion on notation”.

1.4 Definition
A version of Ackermann functions [10]

A sequence of Ackermann functions A, (3 *)?
— X", n €N is defined by

Ag(x,y) =yl

Ay x A)=x

Ay (x, A=A
AL (x, A) =1 ifn > 3
forn > 0,

Acvixy)= AL Ak y)
An+l (Xa )’2) = A n (X, An*l(x’ Y))//

1.5 Definition
Limited (right) recursion on notation

Let the functions g, hi, hy, j be given. We say
that a function f is defined form g, hi, hy, j by

limited recursion on notation iff
f(x, N) = g(x)
(% yD) = h( % ¥, £ X, ¥)
f( x, ¥2) = o x, ¥, f( x, ¥)
| (Nl < | (x|

where | x | denotes the length of x € 3 *J/

Note that under limited recursion on notation, the
length of f( x, y) must be bounded by that of j( x, y).

1.6 Definition

n
Word-theoretic Grzegorczyk hierarchy £ 3

£ g, n > 0 is the smallest class containing the
initial functions:

200, $1%), 200, Un( %), Aulx, y)

and being closed under the following operations:

(A) composition

(B) limited recursion on notation.//
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Example. Axy [cond(x, y, 2)] isin £ OE’ where

2) d=ef "

cond(x, y, if x=A then y else z".

We can see by showing the following operation:
cond( A, y,z) =y
cond( x1,y,z) =1z
cond( x2,y,z) =z

fAxy leond(x, y, 2] | < | Ay [si®) 11

where s i(y)=si(si(---(s1(y)) ).

z times

The fanction s }(y) is simply obtained in ég.
through composition.//

2. Preliminaries and Some Results

In the definition of the above classes, limited
right recursion on notation is used. We can easily

show that 5% is also closed under limited left

recursion on notation as follows. Observe that the

left-successor s 3(X)=1x (tesp. & »(x)=2x) belongs to

0 .
52 since
s(A)=1 resp.  saA) =2

SED=s( S0 SyrD=s1( S 10
TI2=s( S0 S5 =so S o)

| S0 < 1Aox, D S0 < |Adx, x)] -
In general, we will now show that & %, n >0

is also preserved the same property.

2.1 Proposition

£ ‘2‘" n>0 is closed under limited left recursion

on notation.

Proof: We shall define an auxiliary function

rev(x) dif “the word x in reversed order” by a

scheme in £ % as follows:

rev(A) = A
rev(xl) = 5 ,(rev(x))
rev(x2) = g o(tev(x))

lev®) | < | A ¢x x| .

Hence rev < & I:\?, n >0.

Let us assume that a function f is defined from
the functions g, hi, hy, j by limited left recursion
on notation. To see that function f can be also
defined by limited right recursion on notation, we

shall define a function T by the scheme of (right)
recutsion on notation as follows:

HxA)=8(%
@ HxyD= 5%y %)

% y2) = A%y H X )

where hi( % ¥, 2) dif

hi{xtevy),z) i=12.

Now we will show by induction on the
formation of y that f( X, y)= I( X, rev(y)) holds
for all x, y. It is true when y = A.

We assume f( x y )= T ( x, rev(y)).

For 1y :

(% 1y) =hy( X, 3 £ X, 1)

= hy( x, rev(rev(y)), (%, rev(y)))
/* by assumption */
= B % revy), (x, rev(y))
/* by scheme (A) */
1 x, rev(y)l)
1 %, rev(ly)).
Similarly for 2y , f( %, 2y)= T( x, rev(2y)).
Also, | ¥(x, rev(y)) | < | j( x, ) | since |
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It follows that | ¥( x, ¥) | < | j( x, rev(y)) |.

n _
Since rev(y) € 3 ¥ so does j( x, rev(y)) and

since T was defined with right recursion, ¥
n
efy.
—_ —_ n
Hence f( x, y) = f( x, rev(y)) € 3 z.

n
Therefore & ¥ is closed under limited left

recursion on notation when n >0. //

By the above proposition , we are able to use
freely both limited left and right recursion on

.. £ n
notation in Yy ,n =0

2.2 Proposition

The following table shows in which classes some
important functions are contained:

n

Functions level n of ¢ P
1) 200, 1), %), U n( ) 0
def
(2) id(x) = “identity function” 0
(3) rev(x)

“the word in reversed order* ()

» def
@) init(x) =
rightmost letter of x”

“the word after removing the O

def
(5) last(x) = " the rightmost letter of x " ¢

def
©) x| = “thelength of x " (|A]l = A) 0
(7 Axy [ cond(x, y, z) ]
® 1-x,x = 1Lx =1 0
def .
(9) conc(x, y) = "concatenation of x and y” |
(10) add( x, yy=x+y, mult(x, y)=x -y 1

Proof: We leave the above proof to reader. The
detailed proof is shown in [2].//

Definition 2.1
— n
A predicate (relation) R( ) is in & y iff there is
n — —
a function f in & 3 such that R( x) =f( %) = A.

n n
(¢ 5 ) stands for the class of predicates of & 5 Jf
We define the characteristic function x g for a

predicate R( x) by

= _[ A, iR(x)is true
% &( X)*[ 1, otherwise

Corollary 2.3
For every n > 0 , a predicate R(x) is in
n
(¢ bX )+ if and only if its characteristic function
n
xrisin§ 5.
—_ n
Proof: Let R( %) be in (€ 5 )s Then by defini-

n —
tion there is a function f in & Y such that R( x)

=f( x) =A. The characteristic function ¥ r{ x)=1-~
_ n _

(1= f( x)) 3 ¥ since f( x) is. Conversely, let

. n . — — .

xr(x)E§ 3. Since R(X) =xr(X) =A, it

follows that R( x) € (¢ r21,‘)“//

Proposition 2.4

(¢ E> » for n >0 is closed under the boolean
operations —, V, &, — and <,

Proof: Let R( ;) and Q(;) be in { € g‘)*.
Also consider the corresponding characteristic unc-
tions X r, X o for R( x) and Q( x). It is clear
that the functions X -.r and X rv q defined by

X r(%) = if Tr(X) =A then 1 else A

X rva(%) = if xr( X) = A then A else

— n
X q( x) are the characteristic functions in 3 >, n
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>0 for the predicates —R( x) and R( x)VQ( ).

(%) i
Hence ( € >/+, n > 0 is closed under all boolean
operations since all other operations can be defined

by means of —i, V.//

Example: The predicates x =A, x = 1 and x =

2 are in (¢ % ).,

By showing the corresponding characteristic func-
tions for each predicate, we can prove “the
predicate x =A" as follows: The characteristic

0
function yA is obtained in 3 > by

xA(A) = A
xa(xl) = 1
n(x2) =1

(A | < | st (®) |
Similarly, we can show that the other predicates

x=1 and x=2 are in (Eg)*. by easily providing
the corresponding characteristic functions.//

The following definition is extremely useful in
dealing with our final result in the small class

E% (resp' (Eg‘)t )

Definition 2.2

Let x, y be words over *. x is said to be “a
part of y”, written xPy if y=uxv for some words
u, v €2*. We say that "x begins y"(written xBy),
“x ends y” (written xEy) if y=xv, y=ux respectively
for some words u, v & 2_* . Note that u, v can
be empty.

Further, (3 ¥) 5, (3 ¥) g, (3 ¥) », stand for
“there is a y&X* which begins z, ends z and is a
part of z such that” respectively. Similarly, we
also define for (Vy). //

Proposition 2.5
if R(x,y) is in (€ %)
For every n > 0, if R(x,y) is in > /* then

(39 5 RGy) isin(€ 5.

Proof: Let 1 x(X,¥) be the characteristic
function for R(x,y). We shall define the charac-
teristic function  x, z) for (3 ¥) s, R(Xx,y)
by the following way:

Hx A) =X r(x A)

U xzl) =if M x 2) = A then A else X r
(% zl)

Hx 72) = if U x z) = A then A else
X R( X, 22)

x| < s @ |

Then the function (X, z) is in & 5 if %z
_ n
(x,y)EEZ when n = 0.
— n
Hence (3¥) 5, R(xy)isin (§3)enz0y

Clearly, (V' y) gR(xy) is also in (¢ ;)*,
because of (V ¥) pR(xy) = —
(3 ¥) BR( x,y). In the similar way, we can show
that (V' ¥) g R( xy) and (V ¥) pR( xy) are in

n > 0

(€5) if R(xy) isin & 3 (the detailed proof
in 2D).

Proposition 2.8
0
The following functions or predicates are in ¢ Y or
0
(é by ) respectively.

def
() Tally x) =

or empty”

“x is composed of 1’s only

def

2) ones =1 ™ —  ‘“concatenation of 1’s as

many times as [x’s” (1 = A)

(3) sub(x, y) 1 | xl=1yl

@ K=yl =y, <yl
(5 xBy, xEy, xPy
©®) z = conc (x, y)
Proof: The detailed proof in [2]. //
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3. The Equivalence Problem in ¢ g

The Kleene T-predicate T(z, x, y) is defined in
Computability Theory [7] as follows:
T(z,x,y) = "the Turing Machine coded by the

number z when  presented with input x has a

computation coded by the number y”.
Definition 3.1 [7]

The class of S-rudimentary predicates is defined
by a finite number of operations of rules (1) - (4)
as follows:

(1) The temary predicate z= conc (xy) is S-
rudimentary,

(2) Any explicit transform!) of an S-rudimentary
predicate is S-rudimentary.

(3) If R( %), S( x) are S-rudimentary, then so
are "R(x), R(x) V S(x) and R( %) &
S( x).

4 If R(x, y) is S-rudimentary, then so are
GYeR(xy), OVeR(XY),
(3 ¥) eRC Y.

Theorem 3.1: The T-predicate is S-rudimentary, [7]

Proposition 3.2

0
(¢ > )+ contains the S-rudimentary predicates.

Proof: By substitution rule, it is easy to see that
&%y, . .
> /* is closed under explicit transform. Further-

0
more we have already shown that (¢ 2)* is closed

under rules (3) & (4), and also Axyz [z = conc(x,

1) We say that R( X,) is an explicit transform of Q( ¥ )
if there are £, ¢, ,, ¢ . such that R( X,) is true
iff Q( T .) is true where for each i = 1,2,...,m either
£ =x;,3=12,..nor ¢, is a constant.

y)]le(fg)n. Thus (5%)* includes  the

S-rudimentary predicates. //

Corollary 3.3

D). contai :
Y /+ contains the T-predicate.

Proof: It follows immediately from theorem
3.1and proposition 3.2. /f

Theorem 3.4

0
The equivalence problem in 3 > is undecidable.
Proof: let X r{z, x, y) be the characteristic

function of T (z, X, y). By the corollary 32,  r&

&%), Consi ;
3 7/« Consider the set of functions
V=iyy [ 2% x 91} x20U ay [1]}

The problem Ay [ X 7(x, x, y)I =iy [1] is
one instance of equivalence problem in V, hence

g0 0
also in € 3 (since VC 3 >). But the above problem

is equivalent to “T (x, x, y) false for all y" ie. to
x x) /2

(actually not even recursively enumerable). Thus the

which is known to be non-recursive

0
equivalence problem in 3 Y is undecidable. //

4. Conclusions

In this paper, we investigated the classes of
primitive recursive word-theoretic functions (resp.

n n

predicates) 3 5 (resp. (¢ X )*) including the undeci-
0

dable problem of £ y. In [2], it was shown that

n n n
£ z=‘§ for n >3 but the small classes & Jn

<2) are incomparable to the corresponding smail

2) @, (x) /" means that the x-machine with input x
computes forever.
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Specially, [2] suggests many

difficult and several open problems requiring the

n
further study in (¢ 2)* for n<2.
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