Browse > Article
http://dx.doi.org/10.4014/jmb.1810.10057

Crystal Structure and Functional Characterization of a Xylose Isomerase (PbXI) from the Psychrophilic Soil Microorganism, Paenibacillus sp.  

Park, Sun-Ha (Unit of Polar Genomics, Korea Polar Research Institute)
Kwon, Sunghark (College of Pharmacy, Chung-Ang University)
Lee, Chang Woo (Unit of Polar Genomics, Korea Polar Research Institute)
Kim, Chang Min (College of Pharmacy, Chung-Ang University)
Jeong, Chang Sook (Unit of Polar Genomics, Korea Polar Research Institute)
Kim, Kyung-Jin (School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University)
Hong, Jong Wook (Department of Bionanotechnology, Graduate School, Hanyang University)
Kim, Hak Jun (Department of Chemistry, Pukyong National University)
Park, Hyun Ho (College of Pharmacy, Chung-Ang University)
Lee, Jun Hyuck (Unit of Polar Genomics, Korea Polar Research Institute)
Publication Information
Journal of Microbiology and Biotechnology / v.29, no.2, 2019 , pp. 244-255 More about this Journal
Abstract
Xylose isomerase (XI; E.C. 5.3.1.5) catalyzes the isomerization of xylose to xylulose, which can be used to produce bioethanol through fermentation. Therefore, XI has recently gained attention as a key catalyst in the bioenergy industry. Here, we identified, purified, and characterized a XI (PbXI) from the psychrophilic soil microorganism, Paenibacillus sp. R4. Surprisingly, activity assay results showed that PbXI is not a cold-active enzyme, but displays optimal activity at $60^{\circ}C$. We solved the crystal structure of PbXI at $1.94-{\AA}$ resolution to investigate the origin of its thermostability. The PbXI structure shows a $({\beta}/{\alpha})_8$-barrel fold with tight tetrameric interactions and it has three divalent metal ions (CaI, CaII, and CaIII). Two metal ions (CaI and CaII) located in the active site are known to be involved in the enzymatic reaction. The third metal ion (CaIII), located near the ${\beta}4-{\alpha}6$ loop region, was newly identified and is thought to be important for the stability of PbXI. Compared with previously determined thermostable and mesophilic XI structures, the ${\beta}1-{\alpha}2$ loop structures near the substrate binding pocket of PbXI were remarkably different. Site-directed mutagenesis studies suggested that the flexible ${\beta}1-{\alpha}2$ loop region is essential for PbXI activity. Our findings provide valuable insights that can be applied in protein engineering to generate low-temperature purpose-specific XI enzymes.
Keywords
Cold-active protein; crystal structure; Paenibacillus species; xylose isomerase; X-ray crystallography;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Park J-H, Batt CA. 2004. Restoration of a defective Lactococcus lactis xylose isomerase. Appl. Environ. Microbiol. 70: 4318-4325.   DOI
2 Kovalevsky AY, Hanson L, Fisher SZ, Mustyakimov M, Mason SA, Forsyth VT, et al. 2010. Metal ion roles and the movement of hydrogen during reaction catalyzed by $\small{D}$-xylose isomerase: a joint x-ray and neutron diffraction study. Structure 18: 688-699.   DOI
3 Chang C, Park BC, Lee D-S, Suh SW. 1999. Crystal structures of thermostable xylose isomerases from Thermus caldophilus and Thermus thermophilus: possible structural determinants of thermostability. J. Mol. Biol. 288: 623-634.   DOI
4 Allen KN, Lavie A, Glasfeld A, Tanada TN, Gerrity DP, Carlson SC, et al. 1994. Role of the divalent metal ion in sugar binding, ring opening, and isomerization by $\small{D}$-xylose isomerase: replacement of a catalytic metal by an amino acid. Biochemistry 33: 1488-1494.   DOI
5 Bae J-E, Hwang KY, Nam KH. 2018. Structural analysis of substrate recognition by glucose isomerase in $Mn^{2+}$ binding mode at M2 site in S. rubiginosus. Biochem. Biophys. Res. Commun. 503: 770-775.   DOI
6 Han B, Bong SM, Cho J, Kim M, Kim SJ, Lee BI. 2015. Crystal structure of a Class 2 $\small{D}$-xylose isomerase from the human intestinal tract microbe Bacteroides thetaiotaomicron. Biodesign 289: 41-47.
7 Lee M, Rozeboom HtJ, de Waal PP, de Jong RM, Dudek HM, Janssen DB. 2017. Metal dependence of the xylose isomerase from Piromyces sp. E2 explored by activity profiling and protein crystallography. Biochemistry 56: 5991-6005.   DOI
8 Lee C, Bagdasarian M, Meng M, Zeikus J. 1990. Catalytic mechanism of xylose (glucose) isomerase from Clostridium thermosulfurogenes. Characterization of the structural gene and function of active site histidine. J. Biol. Chem. 265: 19082-19090.   DOI
9 Isaksen GV, Åqvist J, Brandsdal BO. 2014. Protein surface softness is the origin of enzyme cold-adaptation of trypsin. PLoS Comput. Biol. 10: e1003813.   DOI
10 Papaleo E, Pasi M, Riccardi L, Sambi I, Fantucci P, Gioia LD. 2008. Protein flexibility in psychrophilic and mesophilic trypsins. Evidence of evolutionary conservation of protein dynamics in trypsin-like serine-proteases. FEBS Lett. 582: 1008-1018.   DOI
11 Santiago M, Ramírez-Sarmiento CA, Zamora RA, Parra LP. 2016. Discovery, molecular mechanisms, and industrial applications of cold-active enzymes. Front. Microbiol. 7: 1408.
12 Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. 2013. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 42: D206-D214.   DOI
13 Toteva MM, Silvaggi NR, Allen KN, Richard JP. 2011. Binding energy and catalysis by $\small{D}$-xylose isomerase: kinetic, product, and X-ray crystallographic analysis of enzyme-catalyzed isomerization of (R)-glyceraldehyde. Biochemistry 50: 10170-10181.   DOI
14 Carrell H, Rubin BH, Hurley TJ, Glusker JP. 1984. X-ray crystal structure of $\small{D}$-xylose isomerase at 4-A resolution. J. Biol. Chem. 259: 3230-3236.   DOI
15 Jenkins J, Janin J, Rey F, Chiadmi M, Van Tilbeurgh H, Lasters I, et al. 1992. Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 1. Crystallography and site-directed mutagenesis of metal binding sites. Biochemistry 31: 5449-5458.   DOI
16 Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR. 2002. Low-temperature extremophiles and their applications. Curr. Opin. Biotechnol. 13: 253-261.   DOI
17 Joseph B, Ramteke PW, Thomas G, Shrivastava N. 2007. Cold-active microbial lipases: a versatile tool for industrial applications. Biotechnol. Mol. Biol. Rev. 2: 39-48.
18 Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, et al. 2011. Overview of the CCP4 suite and current developments. Acta Crystallographica Section Biol. Crystallogr. 67: 235-242.   DOI
19 Otwinowski Z, Minor W. 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276: 307-326.   DOI
20 Vagin A, Teplyakov A. 1997. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30: 1022-1025.   DOI
21 Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60: 2126-2132.   DOI
22 Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, et al. 2011. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67: 355-367.   DOI
23 Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, et al. 2010. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66: 12-21.   DOI
24 Vieille C, Hess JM, Kelly RM, Zeikus JG. 1995. xylA cloning and sequencing and biochemical characterization of xylose isomerase from Thermotoga neapolitana. Appl. Environ. Microbiol. 61: 1867-1875.   DOI
25 Holm L, Rosenström P. 2010. Dali server: conservation mapping in 3D. Nucleic Acids Res. 38: W545-W549.   DOI
26 Vieille C, Epting KL, Kelly RM, Zeikus JG. 2001. Bivalent cations and amino-acid composition contribute to the thermostability of Bacillus licheniformis xylose isomerase. Eur. J. Biochem. 268: 6291-6301.   DOI
27 Sriprapundh D, Vieille C, Zeikus JG. 2000. Molecular determinants of xylose isomerase thermal stability and activity: analysis of thermozymes by site-directed mutagenesis. Protein Eng. 13: 259-265.   DOI
28 Lavie A, Allen KN, Petsko GA, Ringe D. 1994. X-ray crystallographic structures of $\small{D}$-xylose isomerase-substrate complexes position the substrate and provide evidence for metal movement during catalysis. Biochemistry 33: 5469-5480.   DOI
29 Zhou H, Cheng J-S, Wang BL, Fink GR, Stephanopoulos G. 2012. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metabol. Eng. 14: 611-622.   DOI
30 Sugiyama S, Maruyama M, Sazaki G, Hirose M, Adachi H, Takano K, et al. 2012. Growth of protein crystals in hydrogels prevents osmotic shock. J. Am. Chem. Soc. 134: 5786-5789.   DOI
31 Zhu X-Y, Teng Mk, Niu L-W, Xu C, Wang Y-Z. 2000. Structure of xylose isomerase from Streptomyces diastaticus No. 7 strain M1033 at $1.8 5\;{\AA}$resolution. Acta Crystallogr. D Biol. Crystallogr. 56: 129-136.   DOI
32 Kristo P, Saarelainen R, Fagerström R, Aho S, Korhola M. 1996. Protein purification, and cloning and characterization of the cDNA and gene for xylose isomerase of barley. Eur. J. Biochem. 237: 240-246.   DOI
33 Madhavan A, Tamalampudi S, Ushida K, Kanai D, Katahira S, Srivastava A, et al. 2009. Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl. Microbiol. Biotechnol. 82: 1067-1068.   DOI
34 Moes CJ, Pretorius IS, van Zyl WH. 1996 . Cloning and expression of the Clostridium thermosulfurogenes $\small{D}$-xylose isomerase gene (xylA) in Saccharomyces cerevisiae. Biotechnol. Lett. 18: 269-274.   DOI
35 Sarthy A, McConaughy B, Lobo Z, Sundstrom J, Furlong C, Hall B. 1987. Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 53: 1996-2000.   DOI
36 Umemoto Y, Shibata T, Araki T. 2012. $\small{D}$-xylose isomerase from a marine bacterium, Vibrio sp. strain XY-214, and $\small{D}$-xylulose production from ${\beta}-1$, 3-xylan. Marine Biotechnol. 14: 10-20.   DOI
37 Son H, Lee S-M, Kim K-J. 2018. Crystal structure and biochemical characterization of xylose isomerase from Piromyces sp. E2. J. Microbiol. Biotechnol. 28: 571-578.   DOI
38 Dekker K, Yamagata H, Sakaguchi K, Udaka S. 1991. Xylose (glucose) isomerase gene from the thermophile Thermus thermophilus: cloning, sequencing, and comparison with other thermostable xylose isomerases. J. Bacteriol. 173: 3078-3083.   DOI
39 Chiang L-C, Gong C-S, Chen L-F, Tsao GT. 1981. D-Xylulose fermentation to ethanol by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 42: 284-289.   DOI
40 Mosier N, Wyman C, Dale B, Elander R, Lee Y, Holtzapple M, et al. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96: 673-686.   DOI
41 Chandrakant P, Bisaria V. 2000. Simultaneous bioconversion of glucose and xylose to ethanol by Saccharomyces cerevisiae in the presence of xylose isomerase. Appl. Microbiol. Biotechnol. 53: 301-309.   DOI
42 Gong C-S, Chen L-F, Flickinger MC, Chiang L-C, Tsao GT. 1981. Production of ethanol from $\small{D}$-xylose by using $\small{D}$-xylose isomerase and yeasts. Appl. Environ. Microbiol. 41: 430-436.   DOI