• Title/Summary/Keyword: Xi

Search Result 2,159, Processing Time 0.028 seconds

A Study of the Equivalence Problem in $\xi\sum{0}$ Class ($\xi\sum{0}$ 등급에서의 동치문제 연구)

  • Dong-Koo Choi;Sung-Hwan Kim
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.10
    • /
    • pp.1301-1308
    • /
    • 2001
  • In this paper, some interesting aspects of Grzegorczyk classes $\xi\sum{n}$, n$\geq$0 & $\sum$= { 1, 2 } of word-theoretic primitive recursive functions are observed including the classes of its corresponding predicates ($\xi\sum{n}$)* In particular, the small classes $\xi\sum{n}$($n\leq2$) are very incomparable to the corresponding small classes $\xi\sum{n}$ where $\xi\sum{n}$ is the number-theoretic Grzegorczyk classes. As one of some interesting aspects of the small classes, we show that the equivalence problem in $\xi\sum{0}$is undecidable.

  • PDF

CHARACTERIZATIONS OF REAL HYPERSURFACES OF TYPE A IN A NONFLAT COMPLEX SPACE FORM WHOSE STRUCTURE JACOBI OPERATOR IS ξ-PARALLEL

  • Kim, Nam-Gil
    • Honam Mathematical Journal
    • /
    • v.31 no.2
    • /
    • pp.185-201
    • /
    • 2009
  • Let M be a real hypersurface with almost contact metric structure $({\phi},{\xi},{\eta},g)$ of a nonflat complex space form whose structure Jacobi operator $R_{\xi}=R({\cdot},{\xi}){\xi}$ is ${\xi}$-parallel. In this paper, we prove that the condition ${\nabla}_{\xi}R_{\xi}=0$ characterize the homogeneous real hypersurfaces of type A in a complex projective space $P_n{\mathbb{C}}$ or a complex hyperbolic space $H_n{\mathbb{C}}$ when $g({\nabla}_{\xi}{\xi},{\nabla}_{\xi}{\xi})$ is constant.

CHARACTERIZATIONS OF REAL HYPERSURFACES OF TYPE A IN A COMPLEX SPACE FORM USED BY THE ζ-PARALLEL STRUCTURE JACOBI OPERATOR

  • Kim, Nam-Gil;Ki, U-Hang;Kurihara, Hiroyuki
    • Honam Mathematical Journal
    • /
    • v.30 no.3
    • /
    • pp.535-550
    • /
    • 2008
  • Let M be a real hypersurface of a complex space form with almost contact metric structure $({\phi},{\xi},{\eta},g)$. In this paper, we study real hypersurfaces in a complex space form whose structure Jacobi operator $R_{\xi}=R({\cdot},{\xi}){\xi}$ is ${\xi}$-parallel. In particular, we prove that the condition ${\nabla}_{\xi}R_{\xi}=0$ characterize the homogeneous real hypersurfaces of type A in a complex: projective space $P_n{\mathbb{C}}$ or a complex hyperbolic space $H_n{\mathbb{C}}$ when $g({\nabla}_{\xi}{\xi},{\nabla}_{\xi}{\xi})$ is constant and not equal to -c/24 on M, where c is a constant holomorphic sectional curvature of a complex space form.

APPROXIMATE CONTROLLABILITY FOR NONLINEAR INTEGRODIFFERENTIAL EQUATIONS

  • Choi, J.R.;Kwun, Y.C.;Sung, Y.K.
    • The Pure and Applied Mathematics
    • /
    • v.2 no.2
    • /
    • pp.173-181
    • /
    • 1995
  • Our objective is to investigate approximate controllability of a class of partial integrodifferential systems. This work continuous the investigations of [8]. As a model for this class one may take the equation $\frac{\partialy(t,\;\xi)}{\partialt}\;=\;\frac{\partial}{\partial\xi}(a(t,\;\xi\frac{\partialy(t,\;\xi)}{\partial\xi})\;+\;F(t,\;y(t\;-\;r,\;\xi),\;{{\int_0}^t}\;k(t,\;s,\;y(s\;-\;r,\;\xi))ds)\;+\;b(\xi)u(t),\;0\;\leq\;\xi\;\leq\;1,\;\leq\;t\;\leq\;T$ with initial-boundary conditions y(t,\;0)\;=\;y(t,\;1)\;=\;0,\;0\;\leq\;t\;\leq\;T,\;y(t,\;\xi)\;=\;\phi(t,\;\xi),\;0\;\leq\;1,\;-r\;\leq\;t\;\leq\;0$.(omitted)

  • PDF

JACOBI OPERATORS ALONG THE STRUCTURE FLOW ON REAL HYPERSURFACES IN A NONFLAT COMPLEX SPACE FORM II

  • Ki, U-Hang;Kurihara, Hiroyuki
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1315-1327
    • /
    • 2011
  • Let M be a real hypersurface of a complex space form with almost contact metric structure (${\phi}$, ${\xi}$, ${\eta}$, g). In this paper, we study real hypersurfaces in a complex space form whose structure Jacobi operator $R_{\xi}=R({\cdot},\;{\xi}){\xi}$ is ${\xi}$-parallel. In particular, we prove that the condition ${\nabla}_{\xi}R_{\xi}=0$ characterizes the homogeneous real hypersurfaces of type A in a complex projective space or a complex hyperbolic space when $R_{\xi}{\phi}S=R_{\xi}S{\phi}$ holds on M, where S denotes the Ricci tensor of type (1,1) on M.

FIRST PASSAGE PROBLEM FOR WIENER PATHS CROSSING DIFFERENTIABLE CURVES

  • Jang, Yu-Seon;Kim, Sung-Lai;Kim, Sung-Kyun
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.475-484
    • /
    • 2005
  • Let W(t) be a Wiener path, let $\xi\;:\;[0,\;{\infty})\;\to\;\mathbb{R}$ be a continuous and increasing function satisfying $\xi$(0) > 0, let $$T_{/xi}=inf\{t{\geq}0\;:\;W(t){\geq}\xi(t)\}$$ be the first-passage time of W over $\xi$, and let F denote the distribution function of $T_{\xi}$. Then the first passage problem has a unique continuous solution as following $$F(t)=u(t)+{\sum_{n=1}^\infty}\int_0^t\;H_n(t,s)u(s)ds$$, where $$u(t)=2\Psi(\xi(t)/\sqrt{t})\;and\;H_1(t,s)=d\Phi\;(\{\xi(t)-\xi(s)\}/\sqrt{t-s})/ds\;for\;0\;{\leq}\;s.

RADIUS CONSTANTS FOR FUNCTIONS ASSOCIATED WITH A LIMACON DOMAIN

  • Cho, Nak Eun;Swaminathan, Anbhu;Wani, Lateef Ahmad
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.353-365
    • /
    • 2022
  • Let 𝓐 be the collection of analytic functions f defined in 𝔻 := {ξ ∈ ℂ : |ξ| < 1} such that f(0) = f'(0) - 1 = 0. Using the concept of subordination (≺), we define $$S^*_{\ell}\;:=\;\{f{\in}A:\;\frac{{\xi}f^{\prime}({\xi})}{f({\xi})}{\prec}{\Phi}_{\ell}(\xi)=1+{\sqrt{2}{\xi}}+{\frac{{\xi}^2}{2}},\;{\xi}{\in}{\mathbb{D}}\}$$, where the function 𝚽(ξ) maps 𝔻 univalently onto the region Ω bounded by the limacon curve (9u2 + 9v2 - 18u + 5)2 - 16(9u2 + 9v2 - 6u + 1) = 0. For 0 < r < 1, let 𝔻r := {ξ ∈ ℂ : |ξ| < r} and 𝒢 be some geometrically defined subfamily of 𝓐. In this paper, we find the largest number 𝜌 ∈ (0, 1) and some function f0 ∈ 𝒢 such that for each f ∈ 𝒢 𝓛f (𝔻r) ⊂ Ω for every 0 < r ≤ 𝜌, and $${\mathcal{L} _{f_0}}({\partial}{\mathbb{D}_{\rho})\;{\cap}\;{\partial}{\Omega}_{\ell}\;{\not=}\;{\emptyset}$$, where the function 𝓛f : 𝔻 → ℂ is given by $${\mathcal{L}}_f({\xi})\;:=\;{\frac{{\xi}f^{\prime}(\xi)}{f(\xi)}},\;f{\in}{\mathcal{A}}$$. Moreover, certain graphical illustrations are provided in support of the results discussed in this paper.

Crystal Structure and Functional Characterization of a Xylose Isomerase (PbXI) from the Psychrophilic Soil Microorganism, Paenibacillus sp.

  • Park, Sun-Ha;Kwon, Sunghark;Lee, Chang Woo;Kim, Chang Min;Jeong, Chang Sook;Kim, Kyung-Jin;Hong, Jong Wook;Kim, Hak Jun;Park, Hyun Ho;Lee, Jun Hyuck
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.244-255
    • /
    • 2019
  • Xylose isomerase (XI; E.C. 5.3.1.5) catalyzes the isomerization of xylose to xylulose, which can be used to produce bioethanol through fermentation. Therefore, XI has recently gained attention as a key catalyst in the bioenergy industry. Here, we identified, purified, and characterized a XI (PbXI) from the psychrophilic soil microorganism, Paenibacillus sp. R4. Surprisingly, activity assay results showed that PbXI is not a cold-active enzyme, but displays optimal activity at $60^{\circ}C$. We solved the crystal structure of PbXI at $1.94-{\AA}$ resolution to investigate the origin of its thermostability. The PbXI structure shows a $({\beta}/{\alpha})_8$-barrel fold with tight tetrameric interactions and it has three divalent metal ions (CaI, CaII, and CaIII). Two metal ions (CaI and CaII) located in the active site are known to be involved in the enzymatic reaction. The third metal ion (CaIII), located near the ${\beta}4-{\alpha}6$ loop region, was newly identified and is thought to be important for the stability of PbXI. Compared with previously determined thermostable and mesophilic XI structures, the ${\beta}1-{\alpha}2$ loop structures near the substrate binding pocket of PbXI were remarkably different. Site-directed mutagenesis studies suggested that the flexible ${\beta}1-{\alpha}2$ loop region is essential for PbXI activity. Our findings provide valuable insights that can be applied in protein engineering to generate low-temperature purpose-specific XI enzymes.

Jacobi Operators with Respect to the Reeb Vector Fields on Real Hypersurfaces in a Nonflat Complex Space Form

  • Ki, U-Hang;Kim, Soo Jin;Kurihara, Hiroyuki
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.541-575
    • /
    • 2016
  • Let M be a real hypersurface of a complex space form with almost contact metric structure (${\phi}$, ${\xi}$, ${\eta}$, g). In this paper, we prove that if the structure Jacobi operator $R_{\xi}= R({\cdot},{\xi}){\xi}$ is ${\phi}{\nabla}_{\xi}{\xi}$-parallel and $R_{\xi}$ commute with the structure tensor ${\phi}$, then M is a homogeneous real hypersurface of Type A provided that $TrR_{\xi}$ is constant.