• 제목/요약/키워드: XO/HX

검색결과 31건 처리시간 0.019초

조위승청탕(調胃升淸湯) 전탕액(煎湯液)이 XO/HX에 의해 손상(損傷)된 배양(培養) 해마신경세포(海馬神經細胞)에 미치는 효과(效果) (Effects of Jowiseungcheongtang water extract on Cultured Primary Hippocampal Cell Culture Damaged by XO/HX)

  • 김형순;김경요;고기덕;김일환;송승연
    • 사상체질의학회지
    • /
    • 제14권1호
    • /
    • pp.67-78
    • /
    • 2002
  • Jowiseungcheongtang(JST) has been in Sasang constitution medicine for many years as a therapeutic agent for cerebral disease. But the effect of Jowiseungcheongtang(JST) on neurotoxicity is not known. The purpose of this study was to determine the effects of Jowiseungcheongtang(JST) on the hippocampal cell injured by Xanthine Oxidase/Hypoxanthine. The results were as follows: 1. XO/HX decreased the survival rate of the cultured hippocampal cells on NR assay and MTT assay. 2. JST water extract have efficacy of decreasing a amount of lipid peroxidation increased by XO/HX in cultured hippocampal cells. 3. JST water extract have efficacy of increasing DNA synthesis decreased by XO/HX in cultured hippocampal cells. From the above results, It is concluded that JST has marked efficacy in preventing cultured hippocampal cells from the damages by XO/HX.

  • PDF

소풍활혈탕 열탕액이 XO/HX에 의해 손상된 배양 척수감각신경세포에 미치는 영향 (Effects of Sopunghwalhyul-tang Water Extract against Xanthine Oxidase / Hypoxanthine(XO/HX)-Induced Neurotoxicity in the Cultured Mouse Spinal Sensory Neurons)

  • 양경석;신선호
    • 대한한의학회지
    • /
    • 제21권1호
    • /
    • pp.29-39
    • /
    • 2000
  • In order to elucidate the toxic mechanism of oxygen radicals in cultured mouse spinal sensory neurons, cytotoxic effect of oxygen radicals was evaluated by M1T assay and NR assay. In addition, protective effect of Sopunghwalhyultang(SPHHT) water extract on oxidant-induced neurotoxicity was investigated on these cultures. Spinal sensory neurons derived from mice were cultured in mediums containing various concentrations of Xanthine Oxidase / Hypoxanthine(XO/HX). Cell viability was measured by MTT assay and NR assay. XO/HX-mediated oxygen radicals remarkably decreased cell viability of cultured spinal sensory neurons in a dose-and time-dependent manner. And also, SPHHT blocked XO/HX-induced neurotoxicity in these cultures. These results suggest that oxygen radicals are toxic and SPHHT are effective in blocking against the oxidant-induced neurotoxicity in cultures of spinal sensory neurons of mice.

  • PDF

울금 추출물이 배양 심장내피세포에 미치는 영향 (Effects of Radix Curcumae Aromaticae Extract in Rat Cardiac Endothelial Cells)

  • 권강범;김인섭;김현규;최기방;김용복;류도곤
    • 동의생리병리학회지
    • /
    • 제17권1호
    • /
    • pp.71-76
    • /
    • 2003
  • To test the protective effect of Radix Curcumae Aromaticae (RCA) on the damage of cardiac endothelial cells by xanthine oxidase (XO)/hypoxanthine (HX)-induced oxygen free radical, Neutral Red (NR), thiobarbituric acid reactive substances (TSARS), and DNA synthesis assay were used in the presence of RCA extract. The results of these experiments were obtained as follows ; Cardiac endothelial cells treated with XO/HX showed the cytotoxicity such as decreases in viability and DNA synthesis, a increase in lipid peroxidation. Cardiac endothelial cells pretreated with RCA extract protected the increase of lipid peroxidation by XO/HX. Cardiac endothelial cells pretreated with RCA extract inhibited the decrease of DNA synthesis by XO/HX. These results show that XO/HX elicits toxic effects in cultured cardiac endothelial cells derived from neonatal rat, and suggest that RCA extract is very effective in the prevention of XO/HX-induced toxicity.

XO/HX에 의하여 손상된 심근세포에 대한 과루해백백주탕 추출물의 방어효과 (Protective Effects of Guaruhaebaekbaekju-tang Extract in XO/HX-treated Rat Myocardial Cells)

  • 박준수;권강범;문형철;김인수;강길성;김인규;김인섭;류도곤
    • 동의생리병리학회지
    • /
    • 제17권2호
    • /
    • pp.486-492
    • /
    • 2003
  • To certify the protective effect of herbal medicine on myocardial damage against oxygen free radical-induced myocardiotoxicity, cytotoxicity was measured using by MTT assay, LDH activity and thiobarbituric acid reactive substances(TBARS) assay in the presence of Guaruhaebaekbaekju-tang(GHBT) extracts or single constituents of this prescription, Myocardial toxicity was evaluated in neonatal rat myocardiocytes in cultures. In the present study, xanthine oxidase/hypoxanthine (XO/HX) resulted in a decrease in cell viability, an increase in LDH activity in culture medium and lipid peroxidation in cultured myocardial cells, In the effect of GHBT extract, it showed the prevention from the XO/HX-induced cardiotoxicity such as the decrease of LDH activity and lipid peroxidation. In the protective effect of Fructus Trichosanthis (FT) and Bulbus Allii Macrostemi (BAM), all the extracts were significantly effective in the protection of XO/HX-induced cardiotoxocity in cultured myocardial cells. From these results, they show that XO/HX is cardiotoxic in cultured myocardial cells derived from neonatal rats, and it suggests that GHBT, FT and BAM extracts are positively effective in the blocking XO/HX-induced cardiotoxicity.

청심연자탕(淸心蓮子湯) 수추출물(水抽出物)이 XO/HX에 의해 손상(損傷)된 배양(培養) 해마신경세포(海馬神經細胞)에 미치는 영향(影響) (Effects of Cheongsimyeonja-tang water extract on the Cultured Primary Hippocampal Cell Damaged by XO/HX)

  • 이재흥;김형순;배영춘;김경요;원경숙;황승연
    • 사상체질의학회지
    • /
    • 제14권3호
    • /
    • pp.132-145
    • /
    • 2002
  • The purpose of this study is to examine the toxic effects caused by xanthine oxidase/hypoxanthine(XO/HX) and the effects of herbal extracts such as Cheongsimyeonjatang(CYT) on the treatment of the toxic effects. For this purpose, experiments with the cultured hippocampal cells from new born mice were done. The results of these experiments were as follows. 1. XO/HX, a oxygen radical-generating system, decreased the survival rates of the cultured cells on MTT assay and NR assay, protein synthesis, and amounts of neurofilaments. 2. CYT have the efficacy of increasing protein synthesis decreased by XO/HX. 3. CYT have the efficacy. of increasing the amount of neurofilaments decreased by XO/HX. From the above results, it is suggested that Cheongsimyeonjatang (CYT) have marked efficacy as a protection for the damages caused by the XO/HX-mediated oxidative stress.

  • PDF

하수오가 Xanthine Oxidase와 Hypoxanthine에 의해 손상된 혈관내피세포에 미치는 영향에 관한 연구 (Effect of Radix Polygoni Multiflori on Cultured Vascular Endotherial Cells Damaged by Xanthine Oxidase and Hypoxanthine)

  • 이용석;김형수;손영우;유교상;이정헌;이강창;최규철;신흥철;박승택
    • 동의생리병리학회지
    • /
    • 제16권4호
    • /
    • pp.720-723
    • /
    • 2002
  • To clarify the vasculotoxicity of reactive oxygen intermediate(ROI) in cultured vascular endotherial cells(VEC), of mouse, cytototoxicity was measured by MTS assay after VEC was incubated to 10~80mU/ml xanthine oxidase(XO) and hypoxanthine(HX) for 2 hours. and also, the protective effect of Radix Polygoni Multiflori(RPM) was determined by MTT assay in these cultrures. Cell viability was positively decreased dose-, and time-dependently, after the treatment with 40mU/ml XO/0.1 mM HX to cultured VEC for 2 hours. In the vasculoprotective effect of RPM on the toxicity induced by XO/HX, RPM prevented the XO/HX-induced cytotoxicity in these cultures. From above the results, it suggests that XO/HX is toxic in cultured VEC and herb extract, RPM has protective effect against the vasculotoxicity induced by XO/HX.

심장내피세포의 DNA 합성량에 미치는 감두탕의 영향(I) (Effects of Gamdu-tang Extract in Rat Cardiac Endothelial Cells)

  • 권강범;김우경;김인수;강길성;김인규;김인섭;류도곤
    • 동의생리병리학회지
    • /
    • 제17권2호
    • /
    • pp.352-355
    • /
    • 2003
  • To investigate the protective effect of Gamdu-tang(GDT) and its constituents. Radix Glycyrrhizae(RG) and Semen Glycine(SG) on the damage of cardiac endothelial cells by xanthine oxidase (XO)/hypoxanthine (HX)-induced oxygen free radical, Neutral Red (NR) and DNA synthesis assay were used. The results were obtained as follows ; Cardiac endothelial cells treated with XO/HX showed the cytotoxicity such as decreases in viability and DNA synthesis. Cardiac endothelial cells pretreated with GDT extracts were not showed the decrease of DNA synthesis by XO/HX, These results show that XO/HX elicits toxic effects in cultured cardiac endothelial cells derived from neonatal rat, and suggest that GDT extract is very effective in the prevention of XO/HX-induced toxicity.

XO/HX에 의해 손상된 배양 심근세포에 대한 지실해백계지탕과 구성약물 추출물의 방어효과 (Protective Effects of Jisilhaebaekgyeji-tang and Constituents Extract on Cultured Rat Myocardial Cell treated by XO/HX)

  • 장승호;권강범;김인수;강길성;김인규;김인섭;류도곤
    • 동의생리병리학회지
    • /
    • 제17권4호
    • /
    • pp.952-957
    • /
    • 2003
  • To certify the protective effect of herbal medicine against oxygen free radical-induced myocardiotoxicity, cytotoxicity was measured using LDH activity and TBARS assay in the presence of Jisilhaebaekgyejitang(JHGT) extracts or single constituents of this prescription, In the present study, xanthine oxidase/hypoxanthine (XO/HX) resulted in a cell damage such as increases in LDH activity in culture medium and lipid peroxidation in cultured myocardial cells. In the effect of JHGT extract and its single constituents, which are Fructus Ponciri Seu Aurantii Immaturus (FPSAI), Cortex Magnoliae Officinalis (CMO), Bulbus Allii Macrostemi (BAM), Ramulus Cinnamomi (RC) and Fructus Trichosanthis (FT), they showed the prevention from the XO/HX-induced cardiotoxicity by the decrease of LDH activity and lipid peroxidation. From these results, they show that XO/HX is cardiotoxic in cultured myocardial cells derived from neonatal rat, and it suggests that JHGT, FPSAI, PT, CMO, BAM, RC and FT extracts are positively effective in the blocking in XO/HX-induced cardiotoxicity.

단삼이 활성산소에 의하여 손상된 배양 해마신경세포에 미치는 영향 (Effect of Salviae Multiorrhizae Radix on The Cultured Mouse Hippocampal Neurons Damaged by Reactive Oxygen Species)

  • 이병찬;한선희;송인영;이강창
    • 동의생리병리학회지
    • /
    • 제17권4호
    • /
    • pp.1008-1012
    • /
    • 2003
  • In order to evaluate the cytotoxic effect of reactive oxygen species(AOS), the cell viability was measured by MTT assay after cultured mouse hippocampal neurons were treated with various concentrations of xanthine oxidase(XO) and hypoxanthine (HX) for 5 hours. And also, the protective effect of Salviae Mutiorrhizae Radix(SMR) on XO/HX-induced neurotoxicity was examined in these cultures. XO/HX significantly decreased cell viability in dose-and time dependent manners when cultured mouse hippocampal neurons were treated with 5~40 mU/ml XO for 5 hours. In the protective effect of SMA, SMR increased cell viability dose-dependently after cultured mouse hippocampal neurons were preincubated with 30~120 ㎍/ml SMR for 2 hours. From these results, it is suggested that XO/HX is toxic on cultured mouse hippocampal neurons, and herbe medicine such as SMR is very effective in blocking the cytotoxicity induced by AOS.

지황음자와 가미지황음자 유출액이 XO/HX로 손상된 배양 해마신경세포에 미치는 효과 (The Effects of Jihwangyeumja and GamiJihwangyeumja water extract on The Cultured Primary Hippocampal Cell Damaged by XO/HX)

  • 이용근;김상호;민상준;양희숙;장현호;김태헌;강형원;유영수
    • 동의생리병리학회지
    • /
    • 제16권5호
    • /
    • pp.989-1000
    • /
    • 2002
  • The purpose of this study is to examine the toxic effects caused by xanthine oxidase/hypoxanthine(XO/HX) and the effects of herbal extracts such as JHYJ and GJHYJ on the treatment of the toxic effects. For this purpose, experiments with the cultured hippocampal cells from new born mice were done. The results of these experiments were as follows. 1. XO/HX, a oxygen radical-generating system, decreased the survival rates of the cultured cells on XTT assay and INT assay, the amount of DNA syntheses, and the amount of neurofilaments, and increased the lipid peroxidation. 2. JHYJ and GJHYJ have the efficacy of increasing the survival rates of the cultured cells. 3. JHYJ and GJHYJ have the efficacy of increasing the amount of neurofilaments and of decreasing the lipid peroxidation. 4. JHYJ and GJHYJ have the efficacy of increasing the amount of DNA syntheses. From the above results, it is suggested that Jihwangyeumja and Gamijihwangyeumja have marked efficacy as a treatment for the damages caused by the XO/HX-mediated oxidative stress. And Jihwangyeumja and Gamijihwangyeumja are thought to have certain pharmacological effects. Further dinical study of this pharmacological effects of Jihwangyeumja and Gamijihwangyeumja should be complemented.