• Title/Summary/Keyword: X-선 구조분석

Search Result 583, Processing Time 0.03 seconds

Particle Characteristics of Flame-Synthesized γ-Al2O3 Nanoparticles (화염법으로 제조된 감마-Al2O3 나노입자의 화염조건에 따른 입자특성 연구)

  • Lee, Gyo-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.509-515
    • /
    • 2012
  • In this study, ${\gamma}-Al_2O_3$ nanoparticles were synthesized by using coflow hydrogen diffusion flames. The synthesis conditions were varied with using several oxygen concentrations in the oxidizing air. The particle characteristics of the flame-synthesized $Al_2O_3$ nanoparticles were determined by examining the crystalline structure, shape, and specific surface area of the nanoparticles. The measured maximum centerline temperature of the flames ranged from 1507.8 K to 1998.7 K. The morphology and crystal structure of the $Al_2O_3$ nanoparticles were determined from SEM images and XRD analyses, respectively. The particle sizes were calculated from measured BET specific surface areas and ranged from 25 nm to 52 nm. From XRD analyses, it was inferred that a large number of the synthesized nanoparticles were ${\gamma}-Al_2O_3$ nanoparticles including ${\theta}-Al_2O_3$ nanoparticles.

The Study on Thermal Analysis and Thermodynamic Characteristics of Spinel Compounds(ZnCo2O4, NiCo2O4) (스피넬 구조를 가지는 전이금속화합물(ZnCo2O4, NiCo2O4)의 열적 분석 및 열역학적 특성 연구)

  • Kim, Jae-Uk;Ji, Myoung-Jin;Cha, Byung-Kwan;Kim, Chul-Hyun;Jang, Won-Cheoul;Kim, Jong-Gyu
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.2
    • /
    • pp.192-197
    • /
    • 2010
  • The spinel compound was obtained by the thermal decomposition of Zn-Co and Zn-Ni gel prepared by sol-gel method using oxalic acid as a chelating agent. The formation of spinel compound has been comfirmed by thermogravimetric analysis (TGA), x-ray powder diffraction (XRD) and infrared spectroscopy (IR). The particle size of 13 nm~16 nm was calculated by Scherrer's equation. The sol-gel method provides a practicable and effective route for the synthesis of the spinel compound at low temperature ($350^{\circ}C$). The kinetic parameters such as activation energy (Ea) and pre-exponential factor (A) for each compound were found by means of the Kissinger method and Arrhenius equation. The decomposition of spinel compound has an activation energy about 155 kJ/mol. Finally, the thermodynamic parameters (${\Delta}G^{\varphi}$, ${\Delta}H^{\varphi}$, ${\Delta}S^{\varphi}$) for decomposition of spinel compound was determined.

Size Control and Dispersion Properties of Illite Clay by Physicochemical Treatment (물리화학적 처리에 의한 일라이트 점토광물의 입도조절 및 분산특성)

  • Lim, Jae Won;Jeong, Euigyung;Seo, Kyeong-won;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.133-137
    • /
    • 2011
  • In this study, illite was size-reduced using a wet-ball-milling treatment to improve its dispersion. Changes in illite particle size, size distribution, and dispersion characteristics after varying the treatment period were investigated. And the dispersion and dispersion stability of illite solution after 2 h wet ball milling treatment with different pH conditions were also evaluated. The illite particle size significantly decreased as the treatment time increased and the size reduction effect of wet ball milling deteriorated above 2 h treatment time. In addition, illite particle size was more evenly distributed as the treatment time increased. X-ray diffraction (XRD) analysis showed that no crystal structural changes of illite were induced, but the characteristic peak of illite the weaker due to the size reduction and exfoliation, as the treatment time increased. Zeta potential analysis showed that the illite dispersion improved, as the treatment time increased. The illite wet-ball-mill treated at pH 2 had the lowest dispersion stability. Illite dispersion and dispersion stability increased as pH increased, due to the increase in surface ionization. Hence, the results showed that as the treatment time increased, the illite particle size decreased, and dispersion and dispersion stability improved due to the increase in surface energy and repulsion force between particles.

Study on the Production Methods and Conservation Treatment of the Gold Earrings Excavated from the Ancient Tombs in Seokchon-dong in Seoul (석촌동 고분군 출토 금제이식의 제작기법 연구 및 보존처리)

  • Kim, Yeseung;Jeong, Seri;Lee, Dahye;Jang, Minkyeong;Kim, Naeun;Yang, Seokjin
    • Conservation Science in Museum
    • /
    • v.26
    • /
    • pp.143-160
    • /
    • 2021
  • The Seoul Baekje Museum has been conducting excavations at the Ancient Tomb Complex in Seokchon-dong, Seoul (Historic Site No. 243), known to be tombs of the royal family and the ruling class during the Hanseong period of the Baekje Kingdom. In this study, gold earrings that were revealed during the excavation underwent scientific analysis and conservation treatment. Stereo microscopy, SEM, X-ray imaging, CT, and XRF were applied in the analysis, and the characteristics, internal structure, and composition of the earrings as well as their production method were investigated. The results confirmed that the main hoops of the gilt-bronze earrings were made of copper cores gilt using mercury amalgamation. The findings also revealed that the hexahedron in the middle pendant was made by connecting small rings using molten gold powder, and the pendant sphere at the end was formed by soldering two hemispheres. As for the two thin-hoop earrings, they showed similar surface compositions but were made using different methods, with one made from a copper core wrapped with a gold plate and the other made by bending a gold rod. The gold content varied depending on the item and the place of measurement, but overall the earrings showed a relatively high gold content of approximately 19 to 21K. The purity of the golden earrings and the sophisticated manufacturing techniques applied indicate the high status of the buried person and of the tomb complex in Seokchong-dong.

growth of Cadmium Sulfide (CdS) Thin Film by Solution Growth Technique and Study of Quantum Size Effects (용액성장법에 의한 Cadmium Sulfide(CdS) 박막 성장 및 양자 사이즈 효과에 관한 연구)

  • 임상철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.4 no.1
    • /
    • pp.1-12
    • /
    • 1997
  • 본 연구에서는 용액성장법에 의해 양자 입자로 구성된 CdS 박막을 슬라이드 유리기 판위에 성장시키고 이들의 구조적 광학적 특성에 대하여 연구하였고 이들 결과를 토대로 용 액성장법으로 성장된 CdS 박막의 양자 사이즈 효과에 대하여 연구하였다. 성장시간은 1, 3, 10, 20분이었고 성장온도는 75$^{\circ}C$였다. X-선 회절 분석결과 본 연구에서 합성된 CdS 박막은 hexagonal상의 결정구조를 갖는 것으로 나타났고 성장시간에 따라 막의 투께는 61~195nm, 입자사이즈는 8.5~22.5nm로 나타났다. 광에너지 변화에 따른 투과도 측정결과 본 연구의 CdS 시료는 성장시간에 따라 에너지 밴드갭이 2.43~2.51 eV로 나타나서 벌크 CdS의 에너 지 밴드갭인 2.42 ev보다 높은 에너지 밴드갭을 갖게 되어 양자 사이즈 효과에 의한 blue shift 현상이 용액성장법에 의해 합성된 CdS 시료에도 존재한다는 것이 밝혀졌다 그리고 이 같은 용액성장법으로 성장된 CdS에 대해 최초로 수행된 Raman 산란 실험결과 이성장방법 으로 성장된 CdS에는 1TO, E2, 1LO 포논 모드가 존재함을 알수 있었고 또한 입자 사이즈 감소에 의한 1LO포논 모드의저주파수 shift 현상 즉 포논 모드의 softening 현상이 있음이 밝혀졌고 softening은 최대6.2%까지 발생하였다. 이와같은 높은 softening은 본연구의 CdS 박막 내 양자 입자의 입도가 작은것에 기인하는 것으로 밝혀졌다. 또한 본 CdS 시료의 양 자 사이즈 효과의 결과로 1TO 포논도 나타났는데 이 1TO 포논과 E2 포논의 Raman shift 는 성장시간 즉 막의 두께와는 무관한 것으로 나타났다.행렬모형(二重比例行列模型)을 이용하여, 산업구조의 변화로 인한 직업별 인력수요 변화가 충분히 고려되도록 하였다. 전망의 결과에 따르면 향후 우리 경제는 지식기반경제(knowledge-based economy)로 이행하고 있다고 볼 수 있다. 우선 산업구조면에서 지식집약적산업으로의 구조조정이 일어나게 되고 이에 따라 산업별 취업구조에서도 고기술산업의 취업준비중이 급속히 증가하게 된다. 직업별 취업분포에 있어서도 전문기술직 행정관리직 등의 고숙련 사무직의 비중은 크게 증가하는 반면 생산관련직과 농림어업직의 비중은 감소하게 된다. 이처럼 경제가 지식집약화되어 감에 따라 고학력자에 대한 수요는 지속적으로 증가하지만 현재 적절한 인력양성과 공급이 이루어지지 않고 있어 향후 기술이나 기능에 따른 수급부일정(需給不一政)(skill mismatch)현상이 매우 심해질 것으로 보인다. 따라서 앞으로의 인력정책에서 가장 주안점을 두어야 할 부분은 첨단기술산업과 관련된 인력의 양성에 있다고 하겠다.2시간까지 LPDG용액은 MEC용액보다 비교적 나은 회복을 보였고 재관류 3일과 7일의 폐기능 평가에서 두 용액 모두에서 폐기능의 점차적 소실을 보였으며 이는 병리조직검사에서 보듯이 폐혐에 의한 외적인 요소라고 생각되며 따라서 LPDG용액은 허혈재관류손상 방지 및 급성폐렴 등 염증을 잘 관리한다면 20시간 이상 LPDG용액의 안전한 폐보존의 가능성 을 얻을 수 있었다.ic 형태로 외래유전자가 발현되었지만 대조구에서 87.0% (26/30개) 배반포기가 $\beta$-Gal 활력을 보인 반면, G418 처리구에서는 모든 배반포기가 $\beta$-Gal 활력을 보였다 (P<0.05). 그러나 대조구 및 G418 처리구의 ICM

Oxidative Dehydrogenation of 1-butene over BiFe0.65MoP0.1 Catalyst: Effect of Phosphorous Precursors (BiFe0.65MoP0.1 촉매 상에서 1-부텐의 산화탈수소화 반응 : 인 전구체의 영향)

  • Park, Jung-Hyun;Youn, Hyun Ki;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.824-830
    • /
    • 2015
  • The influence of phosphorous precursors, $NH_4H_2PO_4$, $(NH_4)_2HPO_4$, $H_3PO_4$, $(C_2H_5)_3PO_4$, and $P_2O_5$, on the catalytic performance of the $BiFe_{0.65}MoP_{0.1}$ catalysts in the oxidative dehydrogenation of 1-butene to 1,3-butadiene was studied. The catalysts were characterized by XRD, $N_2$-sorption, ICP, SEM and TPRO analyses. It was not observed big difference on the physical properties of catalysts in accordance with used different phosphorous precursors, however, the catalytic performance was largely depended on the nature of the phosphorous precursors. Of various precursors, the $BiFe_{0.65}MoP_{0.1}$ oxide catalyst, which was prepared from a phosphoric acid precursor, showed the best catalytic performance. Conversion and yield to butadiene of the catalyst showed 79.5% and 67.7%, respectively, after 14 h on stream. The cation of phosphorous precursors was speculated to affect the lattice structure of the catalysts during catalyst preparation and this difference was influenced on the re-oxidation ability of the catalysts. Based on the results of TPRO, it was proposed that the catalytic performance could be correlated with re-oxidation ability of the catalysts.

A Study on the Application of SILRES BS OH 100 Consolidants for Shale (셰일에 대한 SILRES BS OH 100 강화제 적용연구)

  • Lee, Sang-Jin;Kim, Jin-Hyung;Do, Jin-Young
    • Journal of Conservation Science
    • /
    • v.21
    • /
    • pp.33-40
    • /
    • 2007
  • The consolidation application of SILRES BS OH 100 was investigated, which has been used for consolidation of the weathered shale. The liquid SILRES BS OH 100 was polymerized by the sol-gel reaction with air moisture, and the XRD patterns showed that the gel was an amorphous solid. The drastic weight reduction of the sample was found by differential thermal analysis, which was followed to the formation of $Si(OH)_4$ particles. After consolidation, the polymerized gel was filled into the voids within the shale. The capillary water absorption of the consolidated shale was reduced to 48.7%, and the abrasive strength was improved.

  • PDF

Humidity-Sensitive Characteristics of MgO and $TiO_2$ Addition on $ZnCr_2O_4$ Ceramic Thick-Film Humidity Sensors (MgO 및 $TiO_2$가 첨가된 $ZnCr_2O_4$ 세라믹 후막 습도센서의 감습 특성)

  • Yoon, Sang-Ok;Kim, Kwan-Soo;Jo, Tae-Hyun;Shim, Sang-Heung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.898-901
    • /
    • 2004
  • [ $ZnCr_2O_4$ ]를 모물질로 하고 MgO, $TiO_2$를 몰비로 2:1, 4:1, 6:1, 및 8:1이 되게 정량적으로 조합한 후, 조사하였다. $ZnCr_2O_4$-MgO와 $ZnCr_2O_4-TiO_2$를 X-선 분석한 결과 Spinel 결정구조를 형성하였으며, 또한 SEM과 EDX 분석결과 각각 $Li_2CrO_4$$Li_3VO_4$의 형성으로 인하여 저항 특성이 나타나는 것을 알 수 있었다. $ZnCr_2O_4-MgO$, $ZnCr_2O_4-TiO_2$에서 MgO의 양이 증가할수록 저항값은 약간 감소하는 반면, $TiO_2$의 양이 증가할수록 저항값이 급격히 증가하는 특성을 나타내었고, 감습 특성에서도 M??보다 TiO2가 더 높게 나타내었다. 습에 따른 복원 특성의 경우 $700^{\circ}C$에서 소결한 ($ZnCr_2O_4:MgO=4:1$)과 ($ZnCr_2O_4:TiO_2=6:1$) 조성의 센서가 가장 양호하였다.

  • PDF

The Effect of Precursor Concentration on ZnO Nanorod Grown by Low-temperature Aqueous Solution Method (저온수열합성방법에 의해 성장한 ZnO 나노로드의 전구체 몰농도 변화에 따른 특성 연구)

  • Mun, D.H.;Ha, J.S.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.1
    • /
    • pp.33-37
    • /
    • 2013
  • In this research, we investigated the effect of mole concentration of precursor on morphological, structural and optical properties of ZnO nanorods. ZnO nanorods were hydrothermally grown on c-plane sapphire substrates in aqueous solution which contains zinc nitrate hexahydrate and hexamethylenetetramine at 90oC in the precursor range of 0.01 M to 0.025 M. With the increase of mole concentration, length and diameter of ZnO nanorods increased. In all the conditions, the growth direction of rods was longitudinally c-axis direction. From the strong emission peak at 380 nm of PL spectra at room temperature, we could confirm that the crystal quality of ZnO nanorods is good to emit radiative recombination spectra.

Effect of solvent and precursor on the CeO2 nanoparticles fabrication (CeO2 나노 분말 합성에 미치는 용매 및 전구체의 영향)

  • Ock, Ji-Young;Son, Jeong-Hun;Bae, Dong-Sik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.3
    • /
    • pp.118-122
    • /
    • 2018
  • Ceria ($CeO_2$) is a rare earth oxide, which has been widely investigated to improve the property. It is important to increase the surface area of $CeO_2$, because high surface area of $CeO_2$ can improve the catalytic ability. $CeO_2$ nanoparticles were synthesized by a solvothermal process. A discussion on the influence of solvent ratio and precursors on $CeO_2$ nanoparticles was performed. The size and degree of the agglomeration of the synthesized $CeO_2$ could be tuned by controlling those parameters. The average size and distribution of prepared $CeO_2$ powders was in the range of 3 to 13 nm and narrow, respectively. The XRD pattern showed that the synthesized $CeO_2$ powders were crystalline with cubic phase of $CeO_2$. The average particle size was calculated by Scherrer equation and FE-TEM images. The morphology of the synthesized $CeO_2$ particle was objected using FE-TEM and FE-SEM. Specific surface area of the synthesized $CeO_2$ was determined using BET (Brunauer-Emmett-Teller) equation.