References
- H. Kato, M. Sano, K. Miyamoto and T. Yao, "Growth and characterization of Ga-doped ZnO layers on a-plane sapphire substrates grown by molecular beam epitaxy", J. Crystal Growth, 237-239, 538 (2002). https://doi.org/10.1016/S0022-0248(01)01972-8
- D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen and T. Goto, "Optically pumped lasing of ZnO at room temperature", Appl. Phys. Lett., 70(17), 2230 (1997). https://doi.org/10.1063/1.118824
- Y. Wu, H. Yan, M. Huang, B. Messer, J. H. Song and P. Yang, "Inorganic semiconductor nanowires: rational growth, assembly, and novel properties", Chem. Eur. J., 8(6), 1260 (2002). https://doi.org/10.1002/1521-3765(20020315)8:6<1260::AID-CHEM1260>3.0.CO;2-Q
- K. Keis, E. Magnusson, H. Lindstrom, S.E. Lindquist and A. Hagfeldt, "A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes", Sol. Energy, 73(1), 51 (2002).
- X. Jiang, F.L. Wong, M.K. Fung and S.T. Lee, "Aluminumdoped zinc oxide films as transparent conductive electrode for organic light-emitting devices", Appl. Phys. Lett., 83(9), 1875 (2003). https://doi.org/10.1063/1.1605805
- P. Mitra, A.P. Chatterjee and H.S. Maiti, "ZnO thin film sensor", Mater. Lett., 35(1-2), 33 (1998). https://doi.org/10.1016/S0167-577X(97)00215-2
- W. I. Park and G. C. Yi, "Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN", Adv. Mater., 16(1), 87 (2004). https://doi.org/10.1002/adma.200305729
- Y. Li, G.W Meng, L.D Zhang and F. Phillip, "Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties", Appl. Phys. Lett., 76(15), 2011 (2000). https://doi.org/10.1063/1.126238
- Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang and D. P. Yu, "Optical properties of the ZnO nanotubes synthesized via vapor phase growth", Appl. Phys. Lett., 83(9), 1689 (2003). https://doi.org/10.1063/1.1605808
- Sun T, Qiu J and Liang C, "Controllable Fabrication and Photocatalytic Activity of ZnO Nanobelt Arrays", J. Phys. Chem., C 112(3), 715 (2008). https://doi.org/10.1021/jp075849h
-
Y. Kashiwaba, T. Abe, S. Onodera, F. Masuoka, A. Nakagawa, H. Endo, I. Niikura and Y. Kashiwaba, "Comparison of non-polar ZnO (11
$\overline{2}$ 0) films deposited on single crystal ZnO (11$\overline{2}$ 0) and sapphire (01$\overline{1}$ 2) substrates", J. Crystal Growth, 298, 477 (2007). https://doi.org/10.1016/j.jcrysgro.2006.10.062 - J.Y. Kim, Y.-J. Choi and H.-H. Park, "Surface Oxidation Effect During high Temperature Vacuum Annealing on the Electrical Conductivity of ZnO thin Films Deposited by ALD", J. Microelectron. Packag. Soc., 19(2), 73 (2012). https://doi.org/10.6117/kmeps.2012.19.2.073
-
D.C. Oh, A. Setiawan, J.J. Kim, H. Ko, H. Makino, T Hanada, M.W. Cho and T. Yao, "Characterization of N-doped ZnO layers grown on (0001)
$GaN/Al_2O_3$ substrates by molecular beam epitaxy", Curr. Appl. Phys., 4(6), 625 (2001). - M. Kumar, R.M. Mehra, A. Wakahara, M.Ishida and A. Yoshida, "Pulsed laser deposition of epitaxial Al-doped ZnO film on sapphire with GaN buffer layer", Thin Solid Films, 484(1-2), 174 (2005). https://doi.org/10.1016/j.tsf.2005.03.011
- K.J. Suh, "Preparation and Properties of ZnMgO Thin Films Prepared by Pulsed Laser Deposition Method", J. Microelec-tron. Packag. Soc., 12(1), 73 (2005). (in Korean).
- L. Spanhel, "Colloidal ZnO nanostructures and functional coatings: A survey", J. Sol-Gel Sci. Technol., 39(1), 7 (2006). https://doi.org/10.1007/s10971-006-7302-5
- L.F. Xu, Y. Guo, Q. Liao, J.P. Zhang and D.S. Xu, "Singlecrystalline ZnO nanotube arrays on conductive glass substrates by selective disolution of electrodeposited ZnO nanorods", J. Phys. Chem., B, 111(12), 4549 (2007).
-
D. Andeen, L. Loeffler, N. Padture and F.F. Lange, "Crystal chemistry of epitaxial ZnO on (111)
$MgAl_2O_4$ produced by hydrothermal synthesis", J. Crystal Growth, 259(1-2), 103 (2003). https://doi.org/10.1016/S0022-0248(03)01589-6 - M.N.R. Ashfold, R.P. Doherty, N.G. Ndifor-Angwafor, D.J. Riley and Y. Sun, "The kinetics of the hydrothermal growth of ZnO nanostructures", Thin Solid Films, 515(24), 8679 (2007). https://doi.org/10.1016/j.tsf.2007.03.122
- L. Schmidt-Mende and J. L. MacManus-Driscoll, "ZnO-nanostructures, defects, and devices", Mater. Today, 10(5), 40 (2007).
- Z. Gui, X. Wang, J. Liu, S. Yan, Y. Ding, Z, Wang and Y. Hu, "Chemical growth of ZnO nanorod arrays on textured nanoparticle nanoribbons and its second-harmonic generation performance", J. Solid. State Chem., 179(7), 1984 (2006). https://doi.org/10.1016/j.jssc.2006.03.035
- A. Sugunan, H.C. Warad, M. Boman and J. Dutta, "Zinc oxide nanowires in chemical bath on seeded substrates: role of hexamine", J. Sol-Gel Sci Technol., 39(1), 49 (2006). https://doi.org/10.1007/s10971-006-6969-y
- V. Srikant and R.D. Clarke, "On the optical band gap of zinc oxide", J. Appl. Phys., 83(10), 5447 (1998). https://doi.org/10.1063/1.367375
- V. A. Fonoberov, K. A. Alim, A. A. Balandin, F. Xiu, and J. Liu, "Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals", Phys. Rev. B, 73(16), 165317 (2006). https://doi.org/10.1103/PhysRevB.73.165317
Cited by
- Barium Titanate Nanoparticles Formed by Chlorine-Free Ambient Condition Sol Process Using Tetrabutylammonium Hydroxide vol.2016, 2016, https://doi.org/10.1155/2016/8205864