Browse > Article
http://dx.doi.org/10.6111/JKCGCT.2018.28.3.118

Effect of solvent and precursor on the CeO2 nanoparticles fabrication  

Ock, Ji-Young (School of Nano & Advanced Materials Eng., Changwon National Univ.)
Son, Jeong-Hun (School of Nano & Advanced Materials Eng., Changwon National Univ.)
Bae, Dong-Sik (School of Nano & Advanced Materials Eng., Changwon National Univ.)
Abstract
Ceria ($CeO_2$) is a rare earth oxide, which has been widely investigated to improve the property. It is important to increase the surface area of $CeO_2$, because high surface area of $CeO_2$ can improve the catalytic ability. $CeO_2$ nanoparticles were synthesized by a solvothermal process. A discussion on the influence of solvent ratio and precursors on $CeO_2$ nanoparticles was performed. The size and degree of the agglomeration of the synthesized $CeO_2$ could be tuned by controlling those parameters. The average size and distribution of prepared $CeO_2$ powders was in the range of 3 to 13 nm and narrow, respectively. The XRD pattern showed that the synthesized $CeO_2$ powders were crystalline with cubic phase of $CeO_2$. The average particle size was calculated by Scherrer equation and FE-TEM images. The morphology of the synthesized $CeO_2$ particle was objected using FE-TEM and FE-SEM. Specific surface area of the synthesized $CeO_2$ was determined using BET (Brunauer-Emmett-Teller) equation.
Keywords
Solvothermal; Nanoparticle; $CeO_2$; Precursors;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Chengyun, Q. Yitai, X. Yi, W. Changsui, Y. Li and Z. Guiwen, "A novel method to prepare nanocrystalline (7 rim) ceria", Mater. Sci. Eng. B 39 (1996) 160.   DOI
2 J.S. Lee and S.C. Choi, "Solvent effect on synthesis of indium tin oxide nano-powders by a solvothermal process", J. Eur. Ceram. Soc. 25 (2005) 3307.   DOI
3 C. Wang, Z.X. Deng, G. Zhang, S. Fan and Y. Li, "Synthesis of nanocrystalline $TiO_2$ in alcohols", Powder Technol. 125 (2002) 39.   DOI
4 S.K.N. Ayudhya, P. Tonto, O. Mekasuwandumrong, V. Pavarajarn and P. Praserthdam, "Solvothermal synthesis of ZnO with various aspect ratios using organic solvents", Cryst. Growth Des. 6 (2006) 2446.   DOI
5 R. Si, Y.W. Zhang, L.P. You and C.H. Yan, "Self-organized monolayer of nanosized ceria colloids stabilized by poly(vinylpyrrolidone)", J. Phys. Chem. B 110 (2006) 5994.   DOI
6 W. Ren, C. Cheng, Y. Xu, Z. Ren and Y. Zhong, "Surfactant-assisted solvothermal synthesis of single-crystalline ternary Bi-Sb-Te hexagonal nanoplates", J. Alloys Compd. 501 (2010) 120.   DOI
7 T.X.T. Sayle and D.C. Sayle, "Elastic deformation in ceria nanorods via a fluorite-to-rutile phase transition", ACS Nano 4 (2010) 879.   DOI
8 A. Gupta, A. Kumar, M.S. Hegde and U.V. Waghmare, "Structure of $Ce_{1-x}Sn_xO_2$ and its relation to oxygen storage property from first-principles analysis", J. Chem. Phys. 132 (2010) 194702.   DOI
9 V. Shapovalov and H. Metiu, "$VO_x$ (x = 1-4) submonolayers supported on rutile $TiO_2(110)$ and $CeO_2(111)$ surfaces: The structure, the charge of the atoms, the XPS spectrum, and the equilibrium composition in the presence of oxygen", J. Phys. Chem. C 111 (2007) 14179.   DOI
10 H.I. Chen and H.Y. Chang, "Synthesis and characterization of nanocrystalline cerium oxide powders by two-stage non-isothermal precipitation", Solid State Comm. 133 (2005) 593.   DOI
11 R. Chockalingam, V.R.W. Amarakoon and H. Giesche, "Alumina/cerium oxide nano-composite electrolyte for solid oxide fuel cell applications", J. Eur. Ceram. Soc. 28 (2008) 959.   DOI
12 T. Karaca, T.G. Altincekic and M.F. Oksuzomer, "Synthesis of nanocrystalline samarium-doped $CeO_2$ (SDC) powders as a solid electrolyte by using a simple solvothermal route", Ceram. Int. 36 (2010) 1101.   DOI
13 A. Tsoga, A. Gupta, A. Naoumidis and P. Nikolopoulos, "Gadolinia-doped ceria and yttria stabilized zirconia interfaces: Regarding their application for SOFC technology", Acta Mater. 48 (2000) 4709.   DOI
14 N. Izu, W. Shin and N. Murayama, "Fast response of resistive-type oxygen gas sensors based on nano-sized ceria powder", Sens. Actuators. B. 93 (2003) 449.   DOI
15 J.F.D. Lima, R.F. Martins, C.R. Neri and O.A. Serra, "ZnO : $CeO_2$-based nanopowders with low catalytic activity as UV absorbers", Appl. Surf. Sci. 255 (2009) 9006.   DOI
16 S. Yabe and T. Sato, "Cerium oxide for sunscreen cosmetics", J. Solid State Chem. 171 (2003) 7.   DOI
17 L.M. Cook, "Chemical processes in glass polishing", J. Non-Cryst. Solids 120 (1990) 152.   DOI
18 G. Kim, "Ceria-promoted three-way catalysts for auto exhaust emission control", Ind. Eng. Chem. Res. 21 (1982) 267.   DOI
19 P.W. Park and J.S. Ledford, "Effect of crystallinity on the photoreduction of cerium oxide: A study of $CeO_2$ and Ce/$Al_2O_3$ catalysts", Langmuir 12 (1996) 1794.   DOI
20 S. Scire, S. Minico, C. Crisafulli, C. Satriano and A. Pistone, "Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts", Appl. Catal. B 40 (2003) 43.   DOI
21 N. Phonthammachai, M. Rumruangwong, E. Gulari, A. M. Jamieson, S. Jitkarnka and S. Wongkasemjit, "Synthesis and rheological properties of mesoporous nanocrystalline $CeO_2$ via sol-gel process", Colloids Surf., A 247 (2004) 61.   DOI
22 A.B. Stambouli and E. Traversa, "Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy", Renew Sustain Energy Rev. 6 (2002) 433.   DOI
23 F. Zhang, S.W. Chan, J.E. Spanier, E. Apeak, Q. Jin, R.D. Robinson and I.P. Herman, "Cerium oxide nanoparticles: Size-selective formation and structure analysis", Appl. Phys. Lett. 80 (2002) 127.   DOI
24 C. Sun, H. Li, H. Zhang, Z. Wang and L. Chen, "Controlled synthesis of $CeO_2$ nanorods by a solvothermal method", Nanotechnology 16 (2005) 1454.   DOI
25 A.V. Thorat, T. Ghoshal, P. Carolan, J.D. Holmes and M.A. Morris, "Defect chemistry and vacancy concentration of luminescent europium doped ceria nanoparticles by the solvothermal method", J. Phys. Chem. C. 118 (2014) 10700.   DOI
26 A.G. Macedo, S.E.M. Fernandes, A.A. Valente, R.A.S. Ferreira, L.D. Carlos and J. Rocha, "Catalytic performance of ceria nanorods in liquid-phase oxidations of hydrocarbons with tert-butyl hydroperoxide", Molecules 15 (2010) 747.   DOI
27 H.I. Chen and H.Y. Chang, "Synthesis of nanocrystalline cerium oxide particles by the precipitation method", Ceram. Int. 31 (2005) 795.   DOI
28 H.C. Yao and Y.F.Y. Yao, "Ceria in automotive exhaust catalysts", J. Catal. 86 (1984) 254.   DOI
29 E. Aneggi, M. Boaro, C.D. Leitenburg, G. Dolcetti and A. Trovarelli, "Insights into the redox properties of ceria-based oxides and their implications in catalysis", J. Alloys Compd. 408 (2006) 1096.
30 K. Zhou, X. Wang, X. Sun, Q. Peng and Y. Li, "Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes", J. Catal. 229 (2005) 206.   DOI
31 M.G. Sujana, K.K. Chattopadyay and S. Anand, "Characterization and optical properties of nano-ceria synthesized by surfactant-mediated precipitation technique in mixed solvent system", Appl. Surf. Sci. 254 (2008) 7405.   DOI
32 S. Gnanam and V. Rajendran, "Synthesis of $CeO_2$ or ${\alpha}$-$Mn_2O_3$ nanoparticles via sol-gel process and their optical properties", J. Sol-Gel Sci. Technol. 58 (2011) 62.   DOI
33 C.L. Robert, J.W. Long, E.M. Lucas, K.A. Pettigrew, R.N. Stround, M.S. Doescher and D.R. Rolison, "Solgel-derived ceria nanoarchitectures: Synthesis, characterization, and electrical properties", Chem. Mater. 18 (2006) 50.   DOI
34 D.J. Guo and Z.H. Jing, "A novel co-precipitation method for preparation of Pt-$CeO_2$ composites on multi-walled carbon nanotubes for direct methanol fuel cells", J. Power Sources 195 (2010) 3802.   DOI
35 B. Ksapabutr, E. Gulari and S. Wongkasemjit, "Sol-gel derived porous ceria powders using cerium glycolate complex as precursor", Mater. Chem. Phys. 99 (2006) 318.   DOI
36 J. Chandradass, B. Nam and K.H. Kim, "Fine tuning of gadolinium doped ceria electrolyte nanoparticles via reverse microemulsion process", Colloids Surf., A 348 (2009) 130.   DOI
37 S.C. Kuiry, S.D. Patil, S. Deshpande and S. Seal, "Spontaneous self-assembly of cerium oxide nanoparticles to nanorods through supraaggregate formation", J. Phys. Chem. B 109 (2005) 6936.   DOI
38 M.D.H. Alonso, A.B. Hungria, A.M. Arias, J.M. Coronado, J.C. Conesa, J. Soria and M.F. Garcia, "Confinement effects in quasi-stoichiometric $CeO_2$ nanoparticles", Phys. Chem. Chem. Phys. 6 (2004) 3524.   DOI
39 K. Yamashita, K.V. Ramanujachary and M. Greenblatt, "Hydrothermal synthesis and low temperature conduction properties of substituted ceria ceramics", Solid State Ionics 81 (1995) 53.   DOI
40 M.S. Kaliszewski and A.H. Heuer, "Alcohol interaction with zirconia powders", J. Am. Ceram. Soc. 73 (1990) 1504.   DOI
41 Z. Wang, Z. Quan and J. Lin, "Remarkable changes in the optical properties of $CeO_2$ nanocrystals induced by lanthanide ions doping", Inorg. Chem. 46 (2007) 5237.   DOI
42 H.G. Choi, Y.H. Jung and D.K. Kim, "Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet", J. Am. Ceram. Soc. 88 (2005) 1684.   DOI
43 V.K. Ivanov, A.B. Shcherbakov and A.V. Usatenko, "Structure-sensitive properties and biomedical applications of nanodispersed cerium dioxide", Russ. Chem. Rev. 78 (2009) 855.   DOI