Browse > Article
http://dx.doi.org/10.6117/kmeps.2013.20.1.033

The Effect of Precursor Concentration on ZnO Nanorod Grown by Low-temperature Aqueous Solution Method  

Mun, D.H. (School of Applied Chemical Engineering, Chonnam National University)
Ha, J.S. (School of Applied Chemical Engineering, Chonnam National University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.20, no.1, 2013 , pp. 33-37 More about this Journal
Abstract
In this research, we investigated the effect of mole concentration of precursor on morphological, structural and optical properties of ZnO nanorods. ZnO nanorods were hydrothermally grown on c-plane sapphire substrates in aqueous solution which contains zinc nitrate hexahydrate and hexamethylenetetramine at 90oC in the precursor range of 0.01 M to 0.025 M. With the increase of mole concentration, length and diameter of ZnO nanorods increased. In all the conditions, the growth direction of rods was longitudinally c-axis direction. From the strong emission peak at 380 nm of PL spectra at room temperature, we could confirm that the crystal quality of ZnO nanorods is good to emit radiative recombination spectra.
Keywords
Zinc oxide; Aqueous solution; Nanorod; Precursor;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H. Kato, M. Sano, K. Miyamoto and T. Yao, "Growth and characterization of Ga-doped ZnO layers on a-plane sapphire substrates grown by molecular beam epitaxy", J. Crystal Growth, 237-239, 538 (2002).   DOI   ScienceOn
2 D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen and T. Goto, "Optically pumped lasing of ZnO at room temperature", Appl. Phys. Lett., 70(17), 2230 (1997).   DOI   ScienceOn
3 Y. Wu, H. Yan, M. Huang, B. Messer, J. H. Song and P. Yang, "Inorganic semiconductor nanowires: rational growth, assembly, and novel properties", Chem. Eur. J., 8(6), 1260 (2002).   DOI   ScienceOn
4 K. Keis, E. Magnusson, H. Lindstrom, S.E. Lindquist and A. Hagfeldt, "A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes", Sol. Energy, 73(1), 51 (2002).
5 X. Jiang, F.L. Wong, M.K. Fung and S.T. Lee, "Aluminumdoped zinc oxide films as transparent conductive electrode for organic light-emitting devices", Appl. Phys. Lett., 83(9), 1875 (2003).   DOI   ScienceOn
6 P. Mitra, A.P. Chatterjee and H.S. Maiti, "ZnO thin film sensor", Mater. Lett., 35(1-2), 33 (1998).   DOI   ScienceOn
7 W. I. Park and G. C. Yi, "Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN", Adv. Mater., 16(1), 87 (2004).   DOI   ScienceOn
8 Y. Li, G.W Meng, L.D Zhang and F. Phillip, "Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties", Appl. Phys. Lett., 76(15), 2011 (2000).   DOI   ScienceOn
9 Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang and D. P. Yu, "Optical properties of the ZnO nanotubes synthesized via vapor phase growth", Appl. Phys. Lett., 83(9), 1689 (2003).   DOI   ScienceOn
10 Sun T, Qiu J and Liang C, "Controllable Fabrication and Photocatalytic Activity of ZnO Nanobelt Arrays", J. Phys. Chem., C 112(3), 715 (2008).   DOI   ScienceOn
11 Y. Kashiwaba, T. Abe, S. Onodera, F. Masuoka, A. Nakagawa, H. Endo, I. Niikura and Y. Kashiwaba, "Comparison of non-polar ZnO (11 $\overline{2}$ 0) films deposited on single crystal ZnO (11 $\overline{2}$ 0) and sapphire (01 $\overline{1}$ 2) substrates", J. Crystal Growth, 298, 477 (2007).   DOI   ScienceOn
12 J.Y. Kim, Y.-J. Choi and H.-H. Park, "Surface Oxidation Effect During high Temperature Vacuum Annealing on the Electrical Conductivity of ZnO thin Films Deposited by ALD", J. Microelectron. Packag. Soc., 19(2), 73 (2012).   과학기술학회마을   DOI   ScienceOn
13 D.C. Oh, A. Setiawan, J.J. Kim, H. Ko, H. Makino, T Hanada, M.W. Cho and T. Yao, "Characterization of N-doped ZnO layers grown on (0001) $GaN/Al_2O_3$ substrates by molecular beam epitaxy", Curr. Appl. Phys., 4(6), 625 (2001).
14 M. Kumar, R.M. Mehra, A. Wakahara, M.Ishida and A. Yoshida, "Pulsed laser deposition of epitaxial Al-doped ZnO film on sapphire with GaN buffer layer", Thin Solid Films, 484(1-2), 174 (2005).   DOI   ScienceOn
15 D. Andeen, L. Loeffler, N. Padture and F.F. Lange, "Crystal chemistry of epitaxial ZnO on (111) $MgAl_2O_4$ produced by hydrothermal synthesis", J. Crystal Growth, 259(1-2), 103 (2003).   DOI   ScienceOn
16 K.J. Suh, "Preparation and Properties of ZnMgO Thin Films Prepared by Pulsed Laser Deposition Method", J. Microelec-tron. Packag. Soc., 12(1), 73 (2005). (in Korean).
17 L. Spanhel, "Colloidal ZnO nanostructures and functional coatings: A survey", J. Sol-Gel Sci. Technol., 39(1), 7 (2006).   DOI
18 L.F. Xu, Y. Guo, Q. Liao, J.P. Zhang and D.S. Xu, "Singlecrystalline ZnO nanotube arrays on conductive glass substrates by selective disolution of electrodeposited ZnO nanorods", J. Phys. Chem., B, 111(12), 4549 (2007).
19 M.N.R. Ashfold, R.P. Doherty, N.G. Ndifor-Angwafor, D.J. Riley and Y. Sun, "The kinetics of the hydrothermal growth of ZnO nanostructures", Thin Solid Films, 515(24), 8679 (2007).   DOI   ScienceOn
20 L. Schmidt-Mende and J. L. MacManus-Driscoll, "ZnO-nanostructures, defects, and devices", Mater. Today, 10(5), 40 (2007).
21 Z. Gui, X. Wang, J. Liu, S. Yan, Y. Ding, Z, Wang and Y. Hu, "Chemical growth of ZnO nanorod arrays on textured nanoparticle nanoribbons and its second-harmonic generation performance", J. Solid. State Chem., 179(7), 1984 (2006).   DOI   ScienceOn
22 A. Sugunan, H.C. Warad, M. Boman and J. Dutta, "Zinc oxide nanowires in chemical bath on seeded substrates: role of hexamine", J. Sol-Gel Sci Technol., 39(1), 49 (2006).   DOI   ScienceOn
23 V. Srikant and R.D. Clarke, "On the optical band gap of zinc oxide", J. Appl. Phys., 83(10), 5447 (1998).   DOI   ScienceOn
24 V. A. Fonoberov, K. A. Alim, A. A. Balandin, F. Xiu, and J. Liu, "Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals", Phys. Rev. B, 73(16), 165317 (2006).   DOI   ScienceOn