• 제목/요약/키워드: Wrought alloy

검색결과 63건 처리시간 0.029초

파이버 레이저를 이용한 이종 마그네슘 합금의 용접성에 관한 연구 (The Weldability of the Dissimilar Magnesium Alloy Welded by Fiber Laser)

  • 김종도;김영식;송무근;이정한
    • Journal of Welding and Joining
    • /
    • 제31권2호
    • /
    • pp.63-68
    • /
    • 2013
  • Magnesium alloys have gained increased attention in recent years as the structural materials, because of their attractive properties such as good specific strength, excellent sound damping capability. However, to expand their applications, a reliable joining process is absolutely necessary. In this study, a CW fiber laser was used to investigate the lap weldability of sand casting and wrought magnesium alloys. The effect of defocused distance on lap weldability was examined, and it was found that spatters always generated at the around focused distance because of the high power density of the laser beam. Thus, defocused distance was required to obtain sound welds. In addition, the application of fillet welding was evaluated for minimizing the affect of sand casting magnesium alloy that have relatively poor weldability. As a result of this study, we could confirm good weldability without weld defects.

가철성(可撤性) 국부의치(局部義齒)에서 연합(聯合) Clasp 연결부위(連結部位)의 미세구조(微細構造) (MICROSTRUCTURE OF COMBINATION CLASP JOINTS IN REMOVABLE PARTIAL DENTURE)

  • 손한기;김태완
    • 대한치과보철학회지
    • /
    • 제22권1호
    • /
    • pp.123-132
    • /
    • 1984
  • 매몰(埋沒) 납착법과 가공선(加工線) 봉매(封埋) 주조법(鑄造法)에 의해 국부의치(局部義齒)의 금속(金屬)과 가공선(加工線)을 각각(各各) 귀금속(貴金屬) 및 비귀금속(非貴金屬)으로 제작(製作)하였을 때 연합(聯合) clasp 연결부(連結部)의 미세구조(微細構造)를 금속(金屬) 현미경(顯微鏡)으로 관찰(觀察)하여 다음과 같은 결과(結果)를 얻었다. 납착 및 주조시편(鑄造試片) 공(共)히 연결부위(連結部位)의 미세조직(微細組織)은 확산(擴散)에 의한 다소(多少)의 결정립계(結晶粒界)의 변화(變化)를 관찰(觀察)할 수 있었다. 납착시편에서는 비귀금속(非貴金屬)보다 귀금속(貴金屬) 사용(使用)시 양호(良好)한 결합양상(結合樣相)을 나타내었다. 납착시편에서는 귀금속(貴金屬) 및 비귀금속(非貴金屬) 차이(差異)보다는 같은 계통(系統)의 금속(金屬)을 사용(使用)함으로서 보다 양호(良好)한 결합양상(結合樣相)을 나타내었다. 주조시편(鑄造試片)과 납착시편 모두에서 시편제작(試片製作)의 기술적(技術的)인 방법(方法)에 의해 다소(多少)의 기공(氣孔) 및 산화물(酸化物) 형성(形成) 등(等)과 같은 오염(汚染)된 계면부(界面部)가 나타났다.

  • PDF

가공선 크라스프의 가요성에 관한 비교 연구 (A COMPARATIVE STUDY ON THE FLEXIBILITY OF THE WROUGHT WIRE CLASPS)

  • 엄태완;장익태;김광남
    • 대한치과보철학회지
    • /
    • 제27권2호
    • /
    • pp.261-270
    • /
    • 1989
  • Bend test is one of the methods comparing the physical properties of the clasp wires. The type of bend test used in this investigation was the cantilever loading of a wrought wire. The purpose of this study was to compare the flexibility of a number of commonly used clasp wires, in according to gauge, alloy and heat treatment, under specific condition of load and deflection. Seven noble and one base metal wires were tested under three conditions as follows: (1) as received, (2) quenched (placed in an over at $700^{\circ}C$ for ten minutes and immediately quenched in water at room temperature.), (3) oven cooled (quencned as described, then placed in an oven at $450^{\circ}C$ for two minutes and uniformly slowly cooled to $250^{\circ}C$ in thirty minutes.) The basic test specimen consists of a sample 25 mm in length and 19, 18 gauge in diameter (17 gauge also in two alloys), and the wire was loaded in the form of straight cantilever beams. Force at 0.25 mm (0.01 inch) and 0.5 mm (0.02 inch) deflections for all samples were recorded. The results were as follows ; 1. Ticonium was least flexible and No. 2 was most flexible in according to gauge, alloy and heat treatment. 2. In most of precious wrought wire, the flexibility was increased, but there was no statistically significant differences between as-received and softened condition. 3. There was no statistically differences between as-received and hardened condition. 4. For each alloy, there were statistically significant differences in flexibility due to clasp diameter.

  • PDF

삼차원 유한 요소법에 의한 가철성 국소의치 클래스프의 응력 분석 (STRESS ANALYSIS ON THE DIFFERENT CLASPS OF THE REMOVABLE PARTIAL DENTURE BY THREE-DIMENSIONAL FINITE ELEMENT METHOD)

  • 박홍렬;김성균;곽재영;허성주;장익태
    • 대한치과보철학회지
    • /
    • 제43권2호
    • /
    • pp.218-231
    • /
    • 2005
  • Statement of problem. In the partially edentulous patients, removable partial dentures have been working as a important treatment modality. Clasps, a kind of direct retainers, received some amount of stresses during the insertion and removal of partial denture on the abutment tooth. Purpose. The study is to investigate stresses of the different clasps. Material and methods. In order to investigate the degree of stresses, maxillary partial edentulism (Kennedy Class II modification I) was assumed and removable partial dentures were designed on it with three kinds of metallic materials; cobalt-chromium alloy, type IV gold alloy and commercially pure (c.p.) titanium. Aker's clasp was applied on the left second molar. RPA (mesial rest-proximal plate-Aker's) clasp was on the left first premolar and wrought wire clasp was on the right first premolar. Three dimensional, non-linear, dynamic finite element analysis method was run to solve this process. Results. 1. Cobalt-chromium alloy had the highest von Mises stress value and c.p. titanium had the lowest one irrespective of the types of clasps. 2. In the Aker's clasps, stress on the retentive tips was shown shortly after the appearance of stresses of the middle and minor connector areas. These time lag was much shorter in the RPA clasps than in the Aker's clasp. 3. In general. retentive tips of wrought wire clasps had much less amount of stress than other clasps. Conclusion. The amount of stress was the highest in the RPA clasp and the lowest in the wrought wire clasp, in general.

초내열합금 Haynes 282 주조합금의 크리프강도에 미치는 시효처리의 영향 (Effect of Aging Time on Creep Property of Cast Haynes 282 Superalloy)

  • 김영주;안용식
    • 동력기계공학회지
    • /
    • 제21권6호
    • /
    • pp.13-20
    • /
    • 2017
  • Ni-base superalloy Haynes 282 was developed as a gas turbine material for use in the ultra-super-critical stage (USC) of next-generation coal-fired power plants. Temperatures in the USC stage exceed $700^{\circ}C$ during operation. In spite of its important role Haynes 282 in increasing the performance of high-pressure turbines, as a result of its high-temperature capability, there is little information on the microstructure, deformation mechanism, or mechanical properties of the cast condition of this alloy. The aim of present study is to examine the creep properties of cast alloy and compare with wrought alloy. The ${\gamma}^{\prime}-precipitates$ were coarsen with the increase of aging time ranging from 8 to 48 hrs. A creep test performed at $750^{\circ}C$ showed faster minimum creep rate and shorter rupture lifetime with the aging time. A creep test performed showed only a slight difference in the rupture life between cast and wrought products. Based on the creep test results, the deformation mechanism is discussed using fractographs.

AZ31 판재의 부풀림 성형 특성 (Blow forming characteristics of AZ31 sheet)

  • 권용남;이영선;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 제5회 박판성형 SYMPOSIUM
    • /
    • pp.99-102
    • /
    • 2006
  • In the present study, the blow forming characteristics of AZ31 sheet was investigated to test the feasibility of the practical application of wrought Mg alloys. Mg alloys have drawn a huge attention in the field of transportation and consumer electronics industries since it is the lightest alloy which could be industrially applicable. Most Mg alloy components have been fabricated by casting method. However, there have been a lot of research activities on the wrought alloys and their plastic forming process recently. Shallow cups for the small electronics cases have been stamped with warm die system. However, some technical issues will challenge Mg forming when large parts are considered with warm die system over $200^{\circ}C$. Most of all, thermal expansion of die system will deteriorate a die accuracy. On the other hand, blow forming does not have a problem with inaccuracy with die system. In this study, tensile tests were followed by blow forming at various temperature and pressure. AZ31 sheet showed a superplastic deformation behavior with extensive grain boundary sliding at the temperature above $300^{\circ}C$. However, the deformation behavior was likely to differ depending on stress condition.

  • PDF

가공용 알루미늄 합금의 극저온 특성 (An Extremely Low Temperature Properties of Wrought Aluminum Alloys)

  • 정찬회;김순국;이준희;이해우;장창우
    • 한국재료학회지
    • /
    • 제17권4호
    • /
    • pp.192-197
    • /
    • 2007
  • The effects of immersion time in the liquid nitrogen on the behavior of aluminum alloys used for the hydrogen storage tank of auto-mobile at cryogenic temperature were investigated. With increasing immersion time in the liquid nitrogen, the elongation of AI 5083 alloy at cryogenic temperature decreased because of non-uniform fracture of precipitates on the grain boundary, and the serration also occurred because of discontinuous slip due to rapid decreasing of the specific heat. The mechanical properties of AI 6061 alloy at cryogenic temperature were characterized by uniformed yield strength, tensile strength and elongation regardless of the immersion time in the liquid nitrogen. These mechanical properties of aluminum alloys at cryogenic temperature were interpreted by the strength of grain boundary and the slip deformation behavior.

방전플라즈마소결로 제조된 나노결정 FeNiCrMoMnSiC 합금의 오스테나이트 안정성과 기계적 특성 (Austenite Stability and Mechanical Properties of Nanocrystalline FeNiCrMoMnSiC Alloy Fabricated by Spark Plasma Sintering)

  • 박정빈;전준협;서남혁;김광훈;손승배;이석재
    • 한국분말재료학회지
    • /
    • 제28권4호
    • /
    • pp.336-341
    • /
    • 2021
  • In this study, a nanocrystalline FeNiCrMoMnSiC alloy was fabricated, and its austenite stability, microstructure, and mechanical properties were investigated. A sintered FeNiCrMoMnSiC alloy sample with nanosized crystal was obtained by high-energy ball milling and spark plasma sintering. The sintering behavior was investigated by measuring the displacement according to the temperature of the sintered body. Through microstructural analysis, it was confirmed that a compact sintered body with few pores was produced, and cementite was formed. The stability of the austenite phase in the sintered samples was evaluated by X-ray diffraction analysis and electron backscatter diffraction. Results revealed a measured value of 51.6% and that the alloy had seven times more austenite stability than AISI 4340 wrought steel. The hardness of the sintered alloy was 60.4 HRC, which was up to 2.4 times higher than that of wrought steel.

AZ31 합금의 동적 재결정에 미치는 변형 조건의 영향 (Effect of Deformation on Dynamic Recrystallization of an AZ31 Mg alloy)

  • 권용남;이영선;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.59-62
    • /
    • 2006
  • Mg alloys have drawn a huge attention in the field of transportation and consumer electronics industries since it is the lightest alloy which could be industrially applicable. Most Mg alloy components have been fabricated by casting method. However, there have been a lot of research activities on the wrought alloys and their plastic forming process recently. The deformation behavior of an AZ31 Mg alloy at the elevated temperature was examined firstly to find out the optimum plastic forming range in terms of temperature and strain rate. During high temperature deformation, AZ31 alloy is usually undergone the dynamic recrystallization which influence the deformation behavior in turn. In the present study, the effect of deformation on dynamic recrystallization of an AZ31 alloy was investigated to clarify the relation between the deformation and recrystallization. In an AZ31 alloy system, the dynamic recrystallization was found to occur continuously. Recrystallized grain size was dependent on the stress level.

  • PDF