• Title/Summary/Keyword: Write Operation

Search Result 225, Processing Time 0.031 seconds

The Implementation of a Fixed Grid File on the Hand-held Storage (휴대저장장치에서 고정그리드파일의 구현)

  • Kim, Dong Hyun;Ban, Chae Hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.313-315
    • /
    • 2013
  • Hand-held devices such as smart phones exploit flash memory based storages to store data for processing jobs. Since the flash memory, non-volatile memory, is able to store mass data, it is required to use the index for processing queries. However, the flash memory has the shortcomings that it does not support the overwrite operation and its write operation is very slow. In this paper, we build the fixed grid file, one of the multi-dimensional spatial index, on a flash memory and evaluate the performance test.

  • PDF

Special Memory Design for Graphics (그래픽스 전용 메모리 설계)

  • 김성진;문상호
    • Journal of Korea Multimedia Society
    • /
    • v.2 no.1
    • /
    • pp.80-88
    • /
    • 1999
  • In this paper, we propose a Special Memory for Graphics(SMGRA) which accelerates memory access time for graphics operations. The SMGRA has a rectangular array memory architecture which has already proposed by Whelan to process pixels in the rectangle area simultaneously, but the SMGRA should improve address decoding time and reduce the number of address pins by using address multiplexing scheme. The SMGRA has a Z-value comparator in the DRAM which is to convert read-modify-write Z buffer into single-write only operation that improves approximately 50% frame buffer access bandwidth.

  • PDF

A study to improve the frame buffer access bandwidth (프레임 버퍼 액세스 대역폭 개선에 관한 연구)

  • Mun, Sang-Ho;Gang, Hyeon-Seok;Park, Gil-Heum
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.2
    • /
    • pp.407-415
    • /
    • 1996
  • This paper introduces two schemes to improve the frame buffer access bandwidth. The first scheme suggests a rasterizer called SBUFRE that has Span Z Buffer and Span Z& Color Buffer within a rasterizer. The second scheme suggests a ZDRAM that has Z-value comparator within the DRAM. These schemes are to convert read- modify-write Z buffer compare into single write only operation that improves approximately 50% frame buffer access bandwidth.

  • PDF

A study on the High Integrated 1TC SONOS Flash Memory (고집적화된 1TC SONOS 플래시 메모리에 관한 연구)

  • 김주연;이상배;한태현;안호명;서광열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.26-31
    • /
    • 2002
  • To realize a high integrated Flash memory utilizing SONOS memory devices, the NOR type 1TC(one Transistor Cell) SONOS Flash arrays are fabricated and characterized. This SONOS Flash arrays with common source lines are designed and fabricated by conventional 0.35$\mu\textrm{m}$ CMOS process. The thickness of ONO for memory cell is tunnel oxide of 34${\AA}$, nitride of 73${\AA}$ and blocking oxide of 34${\AA}$. To investigate operating characteristics, CHEI(Channel Hot Electron Injection) method and Bit line erase method are selected as the write operation and the erase method, respectively. The disturbance characteristics according to the write/erase/read cycling are also examined. The degradation characteristics are investigated and then the reliability of SONOS flash memory is guaranteed.

  • PDF

Way-set Associative Management for Low Power Hybrid L2 Cache Memory (고성능 저전력 하이브리드 L2 캐시 메모리를 위한 연관사상 집합 관리)

  • Jung, Bo-Sung;Lee, Jung-Hoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.3
    • /
    • pp.125-131
    • /
    • 2018
  • STT-RAM is attracting as a next generation Non-volatile memory for replacing cache memory with low leakage energy, high integration and memory access performance similar to SRAM. However, there is problem of write operations as the other Non_volatile memory. Hybrid cache memory using SRAM and STT-RAM is attracting attention as a cache memory structure with lowe power consumption. Despite this, reducing the leakage energy consumption by the STT-RAM is still lacking access to the Dynamic energy. In this paper, we proposed as energy management method such as a way-selection approach for hybrid L2 cache fo SRAM and STT-RAM and memory selection method of write/read operation. According to the simulation results, the proposed hybrid cache memory reduced the average energy consumption by 40% on SPEC CPU 2006, compared with SRAM cache memory.

Fabrication of Tern bit level SONOS F1ash memories (테라비트급 SONOS 플래시 메모리 제작)

  • Kim, Joo-Yeon;Kim, Byun-Cheul;Seo, Kwang-Yell;Kim, Jung-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.26-27
    • /
    • 2006
  • To develop tera-bit level SONOS flash memories, SONOS unit memory and 64 bit flash arrays are fabricated. The unit cells have both channel length and width of 30nm. The NAND & NOR arrays are fabricated on SOI wafer and patterned by E-beam. The unit cells represent good write/erase characteristics and reliability characteristics. SSL-NOR array have normal write/erase operation. These researches are leading the realization of Tera-bit level non-volatile nano flash memory.

  • PDF

Buffer Policy based on High-capacity Hybrid Memories for Latency Reduction of Read/Write Operations in High-performance SSD Systems

  • Kim, Sungho;Hwang, Sang-Ho;Lee, Myungsub;Kwak, Jong Wook;Park, Chang-Hyeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.7
    • /
    • pp.1-8
    • /
    • 2019
  • Recently, an SSD with hybrid buffer memories is actively researching to reduce the overall latency in server computing systems. However, existing hybrid buffer policies caused many swapping operations in pages because it did not consider the overall latency such as read/write operations of flash chips in the SSD. This paper proposes the clock with hybrid buffer memories (CLOCK-HBM) for a new hybrid buffer policy in the SSD with server computing systems. The CLOCK-HBM constructs new policies based on unique characteristics in both DRAM buffer and NVMs buffer for reducing the number of swapping operations in the SSD. In experimental results, the CLOCK-HBM reduced the number of swapping operations in the SSD by 43.5% on average, compared with LRU, CLOCK, and CLOCK-DNV.

NVM-based Write Amplification Reduction to Avoid Performance Fluctuation of Flash Storage (플래시 스토리지의 성능 지연 방지를 위한 비휘발성램 기반 쓰기 증폭 감소 기법)

  • Lee, Eunji;Jeong, Minseong;Bahn, Hyokyung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.4
    • /
    • pp.15-20
    • /
    • 2016
  • Write amplification is a critical factor that limits the stable performance of flash-based storage systems. To reduce write amplification, this paper presents a new technique that cooperatively manages data in flash storage and nonvolatile memory (NVM). Our scheme basically considers NVM as the cache of flash storage, but allows the original data in flash storage to be invalidated if there is a cached copy in NVM, which can temporarily serve as the original data. This scheme eliminates the copy-out operation for a substantial number of cached data, thereby enhancing garbage collection efficiency. Experimental results show that the proposed scheme reduces the copy-out overhead of garbage collection by 51.4% and decreases the standard deviation of response time by 35.4% on average.

Performance Analysis of Flash Translation Layer Algorithms for Windows-based Flash Memory Storage Device (윈도우즈 기반 플래시 메모리의 플래시 변환 계층 알고리즘 성능 분석)

  • Park, Won-Joo;Park, Sung-Hwan;Park, Sang-Won
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.4
    • /
    • pp.213-225
    • /
    • 2007
  • Flash memory is widely used as a storage device for potable equipments such as digital cameras, MP3 players and cellular phones because of its characteristics such as its large volume and nonvolatile feature, low power consumption, and good performance. However, a block in flash memories should be erased to write because of its hardware characteristic which is called as erase-before-write architecture. The erase operation is much slower than read or write operations. FTL is used to overcome this problem. We compared the performance of the existing FTL algorithms on Windows-based OS. We have developed a tool called FTL APAT in order to gather I/O patterns of the disk and analyze the performance of the FTL algorithms. It is the log buffer scheme with full associative sector translation(FAST) that the performance is best.

Efficient Flash Memory Access Power Reduction Techniques for IoT-Driven Rare-Event Logging Application (IoT 기반 간헐적 이벤트 로깅 응용에 최적화된 효율적 플래시 메모리 전력 소모 감소기법)

  • Kwon, Jisu;Cho, Jeonghun;Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.2
    • /
    • pp.87-96
    • /
    • 2019
  • Low power issue is one of the most critical problems in the Internet of Things (IoT), which are powered by battery. To solve this problem, various approaches have been presented so far. In this paper, we propose a method to reduce the power consumption by reducing the numbers of accesses into the flash memory consuming a large amount of power for on-chip software execution. Our approach is based on using cooperative logging structure to distribute the sampling overhead in single sensor node to adjacent nodes in case of rare-event applications. The proposed algorithm to identify event occurrence is newly introduced with negative feedback method by observing difference between past data and recent data coming from the sensor. When an event with need of flash access is determined, the proposed approach only allows access to write the sampled data in flash memory. The proposed event detection algorithm (EDA) result in 30% reduction of power consumption compared to the conventional flash write scheme for all cases of event. The sampled data from the sensor is first traced into the random access memory (RAM), and write access to the flash memory is delayed until the page buffer of the on-chip flash memory controller in the micro controller unit (MCU) is full of the numbers of the traced data, thereby reducing the frequency of accessing flash memory. This technique additionally reduces power consumption by 40% compared to flash-write all data. By sharing the sampling information via LoRa channel, the overhead in sampling data is distributed, to reduce the sampling load on each node, so that the 66% reduction of total power consumption is achieved in several IoT edge nodes by removing the sampling operation of duplicated data.