• Title/Summary/Keyword: Worst case scenario

Search Result 80, Processing Time 0.028 seconds

Offsite Consequence Analysis for Accidental Release Scenarios of Toxic Substances in the Yochon Area (여천지역 누출사고 시나리오에 따른 인근 지역 피해 분석)

  • 김영성
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.2
    • /
    • pp.151-158
    • /
    • 1999
  • Offsite consequences resulting form worst-case scenarios involving release of toxic substances in the Yochon area were estimated using the ALOHA(Areal Locations of Hazardous Atmospheres) model. Eight toxic substances, including NH3, were considered; five were toxic gases and three were toxic liquids at ambient temperature. For toxic gases, the entire quantity was assumed to be released at a constant rate during a 10-minute period. For toxic liquids, the entire quantity stored in the tank was assumed to be spilled and spread and spread instantaneously to form a pool with a depth of 1cm, and then evaporated over some period of time. Except for phosgene and toluene 2,4-diisocyanate, for which concentration levels corresponding to human health effects are very low, average distances of the area at risk of adverse health effects for a 1- tom release were predicted to be $2.3{\pm}1.1 km$ for the worst-case meteorological conditions and $0.93{\pm}0.69km$ under typical meteorological conditions of the Yochon are. Because a large number of people were predicted to be affected in the current analysis, refined analyses considering both realistic accident scenarios and topographic effects were warranted.

  • PDF

Unit Commitment of a Microgrid Considering Islanded Operation Scenarios (독립운전 시나리오를 고려한 마이크로그리드의 최적 발전기 기동정지 계획)

  • Lee, Si Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.6
    • /
    • pp.708-714
    • /
    • 2018
  • Islanded operation of a microgrid can ensure the reliable operation of the system when a large accident occurs in the main grid. However, because the generation capability of a microgrid is typically limited, a microgrid operator should take islanded operation risk into account in scheduling its generation resources. To address this problem, in this paper we have proposed two unit commitment formulations based on the islanding scenario that reflect the expected and worst-case values of the islanded operation risk. An optimal resource scheduling strategy is obtained for the microgrid operator by solving these optimization problem, and the effectiveness of the proposed method is investigated by numerical simulations.

Offsite Risk Assessment on Chloric Acid Release (염산취급시설의 사고시 사업장외에 미치는 영향평가)

  • Park, Kyoshik
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.781-785
    • /
    • 2016
  • Chloric acid is a toxic chemical and the risk of facility handling chloric acid was assessed from the list of accident scenario to provide countermeasure to keep the vicinity safe. Accident scenarios were listed by using MSDS and process safety information. The scenarios having effect to the off-site were selected and assessed further according to guideline provided by Korea government. Worst case and alternative scenarios including other interested scenarios were evaluated using ALOHA. Each evaluated scenario was assessed further considering countermeasures. The results showed that the facility handling chloric acid is safe enough and needed no further protections at the moment.

해석적 방법을 이용한 Worst Hot 조건에서 질량변화의 여부에 따른 발사시 열해석

  • Kim, Hui-Kyung;Choi, Joon-Min;Hyun, Bum-Seok
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.42-49
    • /
    • 2004
  • Analytical solutions are developed to predict temperature of a satellite box during launch stage under the assumption of worst hot condition. The considered time period is from fairing jettison to separation of satellite during launch stage. After fairing jettison, a box mounted on outer surface of satellite are exposed to space environments such as direct solar flux, Earth IR, Albedo, and free molecular heating. The thermal governing equation is simplified to 1st order ordinary differential equation such that analytic solutions are acquired after the box is assumed as a single lumped mass. The analytical solutions are also available for mass varying box. Finally, the practical application is performed for the case of STSAT-1 launch scenario.

  • PDF

System Level Architecture Evaluation and Optimization: an Industrial Case Study with AMBA3 AXI

  • Lee, Jong-Eun;Kwon, Woo-Cheol;Kim, Tae-Hun;Chung, Eui-Young;Choi, Kyu-Myung;Kong, Jeong-Taek;Eo, Soo-Kwan;Gwilt, David
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.4
    • /
    • pp.229-236
    • /
    • 2005
  • This paper presents a system level architecture evaluation technique that leverages transaction level modeling but also significantly extends it to the realm of system level performance evaluation. A major issue lies with the modeling effort. To reduce the modeling effort the proposed technique develops the concept of worst case scenarios. Since the memory controller is often found to be an important component that critically affects the system performance and thus needs optimization, the paper further addresses how to evaluate and optimize the memory controllers, focusing on the test environment and the methodology. The paper also presents an industrial case study using a real state-of-the-art design. In the case study, it is reported that the proposed technique has helped successfully find the performance bottleneck and provide appropriate feedback on time.

Analysis of PM2.5 Impact and Human Exposure from Worst-Case of Mt. Baekdu Volcanic Eruption (백두산 분화 Worst-case로 인한 우리나라 초미세먼지(PM2.5) 영향분석 및 노출평가)

  • Park, Jae Eun;Kim, Hyerim;Sunwoo, Young
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1267-1276
    • /
    • 2020
  • To quantitatively predict the impacts of large-scale volcanic eruptions of Mt. Baekdu on air quality and damage around the Korean Peninsula, a three-dimensional chemistry-transport modeling system (Weather Research & Forecasting - Sparse Matrix Operation Kernel Emission - Comunity Multi-scale Air Quality) was adopted. A worst-case meteorology scenario was selected to estimate the direct impact on Korea. This study applied the typical worst-case scenarios that are likely to cause significant damage to Korea among worst-case volcanic eruptions of Mt. Baekdu in the past decade (2005~2014) and assumed a massive VEI 4 volcanic eruption on May 16, 2012, to analyze the concentration of PM2.5 caused by the volcanic eruption. The effects of air quality in each region-cities, counties, boroughs-were estimated, and vulnerable areas were derived by conducting an exposure assessment reflecting vulnerable groups. Moreover, the effects of cities, counties, and boroughs were analyzed with a high-resolution scale (9 km × 9 km) to derive vulnerable areas within the regions. As a result of analyzing the typical worst-case volcanic eruptions of Mt. Baekdu, a discrepancy was shown in areas between high PM2.5 concentration, high population density, and where vulnerable groups are concentrated. From the result, PM2.5 peak concentration was about 24,547 ㎍/㎥, which is estimated to be a more serious situation than the eruption of Mt. St. Helensin 1980, which is known for 540 million tons of volcanic ash. Paju, Gimpo, Goyang, Ganghwa, Sancheong, Hadong showed to have a high PM2.5 concentration. Paju appeared to be the most vulnerable area from the exposure assessment. While areas estimated with a high concentration of air pollutants are important, it is also necessary to develop plans and measures considering densely populated areas or areas with high concentrations of susceptible population or vulnerable groups. Also, establishing measures for each vulnerable area by selecting high concentration areas within cities, counties, and boroughs rather than establishing uniform measures for all regions is needed. This study will provide the foundation for developing the standards for disaster declaration and preemptive response systems for volcanic eruptions.

The Impact Analysis of the Leakage Scenario in the Tank of Hydrogen Fuel Cell Vessel (수소연료전지선박의 탱크 내 누출시나리오에 따른 영향분석)

  • Sang-Jin Lim ․;Yoon-Ho Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.13-22
    • /
    • 2023
  • As an alternative to environmental pollution generated from fossil fuels currently in use, research is being actively conducted to use hydrogen that does not cause air pollution. As fire and explosion accidents caused by hydrogen leakage have occurred until recently, research on safety is needed to commercialize hydrogen on ships, which are special environments. In this study, a seasonal alternative scenario for each season and the worst scenario were assumed in the event of a leakage accident while a hydrogen fuel cell propulsion ship equipped with a hydrogen storage tank was navigating at JangSaengPo port in Ulsan. In order to consider environmental variables, the damage impact range was derived through ALOHA and probit analysis based on the annual average weather data for 2021 by the Korea Meteorological Administration and on geographic information data from the National Statistical Office. Radiation showed a wider damage range than that of Overpressure and Flame in both the alternative and worst-case scenarios, and as a result of probit analysis, a fatality rate of 99% was confirmed in all areas.

A study on the procedures of emergency response to use Activity-Action Diagram technique at train accident in Urban Railroad (도시철도 차량사고에 액티비티-액션다이아 그램 기법을 적용한 비상대응 절차 구현 연구)

  • Hwang, Seong-Geun;Yang, Doh-Chul
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1165-1171
    • /
    • 2006
  • The purpose of this study is to implement an emergency response procedure based on the scenario of the field of vehicles and provide more rapid and exact response program needed when train accidents happen. Therefore, we have made worst case combinations of accidents and prioritized the combinations. A number of accidents have been analyzed according to the type of, the people affected by, and the location of accident. Both horizontal and vertical response system have also been defined. Furthermore, Activity-Action Diagram has been applied to the emergency response scenario and action procedure of each group has been clearly systematized. Consequently, this paper provides a specific response system useful when train accidents happen.

  • PDF

A Study on the Simulation of Operational Characteristics of Industrial Robot for Automated Manufacturing System (생산자동화 시스템을 위한 산업용 로봇의 운전특성 시뮬레이션에 관한 연구)

  • Kim, Jin-Kwang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.5
    • /
    • pp.405-410
    • /
    • 2017
  • This paper deals with 3D simulation of industrial robot for automated manufacturing system. In order to evaluate the operational characteristics of the industrial robot system in the worst case motion scenario, flexible - rigid multibody analysis was performed. Then, the rigid body dynamics analysis was performed and the results were compared with the flexible - rigid multibody analysis. Modal analysis was also performed to confirm the dynamic characteristics of the robot system. In the case of the flexible-rigid multibody simulation, only the structural members of interest were modeled as elastic bodies to confirm the stress state. The remaining structural members were modeled as rigid bodies to reduce computer resources.

Nonlinear Feedback Linearization-H\ulcorner/Sliding Mode Controller Design for Improving Transient Stability in a Power System

  • Lee, Sang-Seung;Park, Jong-Keun
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.193-201
    • /
    • 1998
  • In this paper, the standard Dole, Glover, Khargoneker, and Francis (abbr. : DGKF 1989) H\ulcorner controller (H\ulcornerC) is extended to the nonlinear feedback linearization-H\ulcorner/sliding mode controller (NFL-H\ulcorner/SMC), to tackle the problem of the unmeasurable state variables as in the conventional SMC, to obtain smooth control as the linearized controller in a linear system, and to improve the time-domain performance under a worst scenario. The proposed controller is obtained by combining the H\ulcorner estimator with the nonlinear feedback linearization-sliding mode controller (NFL-SMC) and it does not need to measure all the state variables as in the traditional SMC. The proposed controller is applied as a nonlinear power system stabilizer (PSS) for the improvement of the power system damping characteristics of an single machine infinite bus system (SMIBS) connected through a double circuit line. The effectiveness of the proposed controller is verified by nonlinear time-domain simulation in case of a 3-cycle line-to-ground fault and in case of the parameter variations for the AVR gain K\ulcorner and for the inertia moment M.

  • PDF