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Mode Controller Design for Improving Trans

Stability in a Power System

Sang-Seung Lee and Jong-Keun Park

Abstract

In this paper, the standard Dole, Glover, Khargoneker, and Francis (abbr. : DGKF 1989) H., controller ( H,,C) is extended
to the nonlinear feedback linearization- H../sliding mode controller (NFL- H../SMC), to tackle the problem of the unmeasurable
state variables as in the conventional SMC, to obtain smooth control as the linearized controller in a linear system, and to
improve the time-domain performance under a worst scenario. The proposed controller is obtained by combining the H,
estimator with the nonlinear feedback linearization-sliding mode controller (NFL-SMC) and it does not need to measure all the
state variables as in the traditional SMC. The proposed controller is applied as a nonlinear power system stabilizer (PSS) for
the improvement of the power system damping characteristics of an single machine infinite bus system (SMIBS) connected
through a double circuit line. The effectiveness of the proposed controller is verified by nonlinear time-domain simulation in
case of a 3-cycle line-to-ground fault and in case of the parameter variations for the AVR gain Ka and for the inertia moment

M.

I. Imtroduction

Sliding mode controller (SMC) and nonlinear feedback
linearization-sliding mode controller (NFL-SMC) have
applied as an effective way of the design of a power
system stabilizer (PSS) for damping oscillations in a power
system [1-14].

However, these NFL-SMCs applied to the PSS are
based on the assumption that the complete state is
avaliable for implementation of the control law [13,14].

In this paper, to cope with the problem of the unmeasu-
rable state variables as in the conventional SMC, to obtain
smooth control as the linearized controller in a linear
system(or to cancel the nonlinearity in a nonlinear system),
and to improve the time-domain performance under a
worst scenario, the standard Dole, Glover, Khargoneker,
and Francis (abbr. : DGKF 1989) H, controller( H.C)[15]
is extended to the nonlinear feedback linearization- H,,
/sliding mode controller (NFL- H,./SMC).
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The proposed controller is obtained by combining the
nonlinear feedback linearization-sliding mode controller
(NFL-SMC) [13-14] with the H, estimator [15], and

eliminates the need to measure all the state variables as in
the traditional SMC. The estimated control input derived
by Lyapunov’s second method, keeps the system stable.

The proposed controller is applied as the nonlinear
power system stabilizer (PSS) for the improvement of the
power system damping characteristics of an single machine
infinite bus (SMIB) connected through a double circuit line
[20-21].

The effectiveness of the proposed controller is verified
by nonlinear time-domain simulation in case of a 3-cycle
line-to-ground fault, and in case of the parameter
variations for the AVR gain K, and for the inertia
moment M.

The organization of this paper is as follows: In section
II the preliminary for the NFLC is represented. In section
IIT the proposed NFL- H./SMC is presented. In section IV
we briefly review the nonlinear power system model. In
section V the feedback linearization of a nonlinear power
system is represented. In section VI the data analysis is
presented. In section VII the nonlinear time-domain
simulation is shown.
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I1. The Preliminary for the NFLC

In this section, the preliminary for a nonlinear feedback
linearization controller (NFCL) is presented = [16-19].
Let us consider the general nonlinear system

x(8)= Rx () + glx () u(D) ' @
y( )= h(x (D) @

in which Ax) and g(x) are smooth vector fields, and
h(x) is a smooth function, defined on R".

The linearizing diffeomorphism using Lie derivative

[13-16] is
2(D=T(x()) :=[h Lh L% Lh......... 17
=[2,(d 2z,(d 2z3(d) z(D......17 3)

where the Lie derivative L is simply the directional
derivative of % along the direction of the vector ;.

r—1
Remark 1: Lh= %f ........ Lih= L%f. @

The state space form based on NFL can be expressed as

2() = Az() + Bu(d) (5)

(= Cz(¥) _ 6)
The derivatives of the output are
(D= Li(x(D)

B — L () + L (D)D)

izd%z—'-‘l = L3(x(D) + L L i(x (D) )

LD — 1 IH0) + Lol e (D) () ™
Remark 2: The eq. (1) and eq. (2) are said to have a
relative degree r at a point x°, if (i) L, Li(x)=0 for all
x in a neighborhood of #° and, for all %< »—1 and (ii)
i LL7 h(x%)=0. '

The control input vector based on NFL is

Lk

() =g(x(£), v(h) : =— L

1
YL ®

where o t)=l;%gl has a linear relation.

III. The Proposed NFL- H;,/SMC Design

In this section, the standard Dole, Glover, Khargoneker,

and Francis (abbr. : DGKF '1989) H,. controller ( H,.C)
[12] is extended to the nonlinear feedback linearization-
Hm/sliding mode controller (NFL- H,,/SMC).

The state equations based on NFL under worst case can

be expressed as

()= T(x(2)) &)
2(H) = Az(8) + B1tuors(8) + Byu( 1) | (10)
D= C12(D) + Dyl ) + Dy D an
WD = Coz( 1) + Dyt orsi ) + Dypue( (12)

where xeR", 2z2€R", w,w=R™, wuc=R™, peR?,
yeR®, A is the nxn system matrix, B, is the nxm,
exogenous input matrix, B, is the nxm, control matrix,
C, is the p,x#n regulated output matrix, C, is the py,x#n
output or measurement matrix, D; is the p;xm,
regulated direct feed-forward matrix, D, is the p,xm,
regulated direct feed-forward matrix, D, is the pyxm,
output direct feed-forward matrix, and D,, is the p,xm,

output direct feed-forward matrix. :
The standard H,, estimator state equation based on NFL

under worst case [15] can be expressed as

2(0)=Az(D+ By ) + By Wy () + ZK (D= D) (13)

where  Wop (D=1 ’BIX2(2) (14)
D= C2(D+ r 2Dy BEX . 2(D

=[Co+ r*DuB{X.]2(2) 15)

Remark 3: The 3 in eq. (14) is a positive scalar value
and is iterated until the desired specification is obtained.

The controller gain K, is given by
K.= Dyp(Bf X+ DLC) ' (16)

where DIZ = (DngDlz) _ ! . (17)

The estimator gain K, is given by .

K.=(YCI+B.D}) Dy (18)
where Dy = (DyDH) ! 19)

The term Z., is given by

Zow=T— 1 2Y0Xo) ! (20)
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The controller Riccati equation term X, is given by

X ch[ A-B, D,DLC, T'BB{-B, DIZBZTT 21
- Clt — (A-B, DpD}CY)
where Cl = (I_ D12 Dlleyz‘) Cl (22)

The estimator Riccati equation term Y, is given by

Yo RZC[ (A-B, Dlezlcz) T Azclcl Cz D},l G (23)
- BBl - (A—-B,Dj DyC)
where B, = B\(I- D} DyDy) 24)

The estimated control input vector based on NFL is

w(t)y=—K_.z(H 25)

where zeR" is the estimated state variables, and K, is

the input gain of the worst case-control.

The internally stabilizing control gain using the packed
matrix notation is

K= A ZBKe] 26)

where A, :=A—-B,K.—Z.K.C,
Y *(BB] — ZoK Dy BDX .o @7

The closed loop system can be expressed as
z(t)
z(t)] [Z

Rl E R E

|50 2ke, ~25

]wm,< H (28)

[sa-[e

where A, :=A—B,K.+ 7 ‘B,B/X.,
—ZoK(Cy+ Y DyBlXs) (30)

Remark 4: A stabilizing compensator can be obtained if
and only if there exist a positive semi-definite solution to
the two Riccati equations, o(X.Y.) < 7%, where o(A) is
a spectral radius of A= largest eigenvalue of
A=A (A).

From eq. (10) and eq. (14), the state equatlon based on
NFL can be expressed as

2(H = Az() + Byt yor{ D + Boul D
= Az(D) + By(rBIX.)2( + Byd
=(A+ B(r *BIX..)z()+ Byu(d 31

Suppose the sliding mode exists on all hyperplanes,
then, the switching surface vector and the differential
switching surface vector can be expressed as

o(=(9) = G2(d) 32)

o(z(9) =G 2(2) .33

where zeR" is the NFL-based state variables, G’ the
sliding surface gain, and the design procedure for
obtaining G7 in the eq. (32) is found in references[1-14].

To determine a control law that keeps the system on
o(2($)=0, we introduce the Lyapunov’s second method

W=(D) = *(2() /2 _ (34)
The time derivative of V(z(#)) can be expressed as
V(2(9) = o(2(8)) o(2(H) 39%)
= GG 2(H
=G DG (A+B(r*B{X..))
+ Byutppr - w-suc(D] < 0 36)

where  wuyp— posuc(® is the input vector of a nonlinear
feedback linearization-worst case-sliding mode control.

The eq. (36) can be reduced as the control input with
switching function

Ui - W—SMc(t)Z—(GTBz) 1[GT(I‘H'BH(T_ZBl Xoh)12(D)
for T2 >0 37

urrr—wsucl D < —(GTBy) ' [GT(A+ B (¥ 2BIX.)](0)
for GT2(H < 0 (38)

The eq. (37) and eq. (38) can be formed as the control
input of the NFL-W-SMC with sign function

Wit —wesuc(H = —(G'By) 7' [GT(A+ By (r B X N2(4)
sign(o(2(D)) 39

The equation (39) can be reformed as follows:

untL - w-suc() =~ Ky sucz (D) sign(o(2(2))) (40)

where Ky gue:= (G'B) ' [GT(A+B(¥ 2BIX.)] (41)
Finally, the estimated control input vector of the
proposed NFL- H../SMC is expressed as
W oy sucl ) =— K- sucz(?) sign(a( 2(1))) “2)

where 2(f)=R" is the estimated state variables, and the
Ky-syc is the input gain of the worst case-sliding mode
control.

Remark 5: The estimated state 2() in eq. (42) is
obtained from eq. (13).

The block diagram of the proposed NFL- H./SMC
under worst case is shown in Fig. 1.
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nonlinear feedback linearlization

Wworst ® ~

X0 = 0, W orse @, u) [P0 o
PO = h(x(O, W warst 0, 00 |y
¥(®) = h(x(t), W yorst (t), u(t))

u(t)=g(R(e), v(t)

=T

BO=AL0O+Byu®+B 1 (OW g ®
+Z K (Y O-$0)

I

3 20

v(t) = - Kyeuc AU sign( £ (sigma(t)))

Proposed NF. L-Hin'f/SMC block

Fig. 1. Block diagram of the proposed NFL- H../SMC.

The internally stabilizing control gain using the packed
matrix notation is

A ZK, @3)

K — A
Halsmc(S) — K e sucsign(a(2(D)) 0

where Al =A- BzKW_ SMcsign(o( 2( t))) - ZooKeCZ
+ 7 (BBl ~ ZoKDpB) X @4

The closed loop system can be expressed as

[ D] [ A —B,Ky- sicsign(o{ X t>>>] [ %0 '
20] | ZoK.LC, A, (1)
+] z B, | 3)
D[ Ci — DieKw- sucsign(o( 2( t)))] [ i( )]
y( t) Cz 0 Z( l’)
] | went® | » (46)

where A, : =A— BoK e sucsign(o{ 2(9)) + 7 BB X
— Z.K{Cy+ T *DyBIX..) )

The algorithm for the proposéd NFL- H./SMC under a

worst scenario is summarized as follows:

(1) Set the nonlinear system representation.

(ii) Set the H, state equation under a worst case.

(iii) Set the H,, estimator equation under a worst case.

(iv) Differentiate with respect to the output equation only
until the input term appears.

(v) Set the linearized system representation.

(vi) Check if the assumptions (the rank conditions) are
satisfied. If they are not, reformulate the problem by

adding (fictitious) inputs or outputs.

(vi)) Select a large positive value of 7.

(vii) Solve the two Riccati equations. Determine if the
solutions are positive semi-definite; also, verify that
the spectral radius condition is met.

(ix) If all the above conditions are satisfied, lower the
value of 7. Otherwise, increase it. Respeat steps (viii)
and (ix) until either an optimal or satisfying solution
is obtained. o

(x) Choose the equation of hyperplane o{z(2))= G7z(2).

(xi) Compute the estimated control input with the sign
function.

(xi)) Apply the estimated control input to the plant.

IV. Nonlinear Power System Model

In this section, we briefly review the nonlinear power
system equations.

1. Nonlinear power system model [21]

The d-axis current and the g-axis current are

i) = come(£) — cony(Rysin () + X, cos & 1)) 48)
i ()= conze (D) — con(— X,sin () + R, cos &) 49)
where )
(C\X1— CRy) V.

cony = (R R+ X, X5) " cony = (RRy+ X, X)

cony :=——————————Eglgl+chz) y  comy :-= SR £ N—
Ry X, X,) (RiR, + X:X7)
Zi =R +iX, Z,:=Ry+iX, , Y:=G+jB
Zri= ZlZfZZZ , 1+Z7Y 1 =C1+C
C,:=RG—-XB , C, : =XG+RB
R, :=R-Cyx, , R, : =R—Cyx,
X) 1 =X+ Cix, Xy :=X+Cux; (50)

The expressions bfor vdD, v (D), v{(H, and T (P are

vk D=xifld 6D
v(D= e (B —xidD) - (52)
V5D = XD + 03D . (53)-

TAOZP(D)=idDvdt)+iDv,8)
= e, (i) + (5, = x)id Di, 1) . (G

where i,(#) is the d-axis current, ;,(#) is the g-axis
current, T.({ is the electric torque, P.(? is the electric



JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 3, NO. 2, 1998 197 ‘

7

power, e;,( p is the g-axis transient voltage, &(p is the ~{000

torque angle, V., is the infinite bus voltage, 2z is the _( )

d-axis reactance, x, is the g-axis reactance, and x, is the b= (63)

d—ax1s transient reactance. R X X . R . .
The linearized differential equations of a single-machine,

Remark 6: In eq. 54, the electric torque T, of a infinite bus system are found in Reference [21].

synchronous -machine near the synchronous speed can be

approximated by the electric power P V. Nonlinear Feedback Linearization im

The nonlinear 4-th order statc equations including the a Power Sy stem

limits imposed on AVR output, i.e. field voltage e, and,

on the stabilizing signal #; are represented as In this section, the nonlinear feedback linearization to
) cancel the nonlinearities in a power system is presented.
o t)=—1%4 Tm—.% T (55) The nonlinear feedback linearization in a power system

from eq. (48)-(58) are obtained by differentiating the
angular velocity until the input term appears

)= w,(a()—1) (56)
2 :=Li=h=w (64)
Gty =—— e+ LT —edd 6D s
Ta 21 =Lp=—3"f= axf M(T T.) (65)
. K
() == el )+ (V= 0l) + () (58) |
. —0h _ dw __
€ fd min < 27 < € fd max and % E min < UE < U E max (59)
230 =Lip=-25 a(L’h) f= a( (Tp=T)
e/dmax=6.0 efdmjn‘:_G.O and UE max = 2.0 UE min=—0.2 ax\ M
] —W(ﬁdgf2+ﬁd10f3) 67
where o(#) is the angular velocity, e, (# is the exciter :
tput voltage, T, is th hanical t , T, is th (L
output voltage is the mechanical torque 4 is the LLj= (a;)gZ%(Tl[(Tm_ Te))g=0 (68)

voltage regulator gain, 7, is the d-axis transient open
circuit time constant, M is the inertia coefficient, w, is s I P 1
the synchronous angular velocity, V,, is the reference 24 i =Lih=— (Lib)f ZW(_—M—(D dofy + 0d mf3))"
voltage, v, is the terminal voltage, and 4, is the =Lpdy pdyy g pdulf ©9)

supplementary excitation control input. 1
L Lih= 4 (Lig=—(~ 37 (pds Fupdu)g

The 4-th order state variables can be repreéented by =[pdy pdyy pdi3 pdyle (70)
D =[n(D) 2D 2D x(H] where
. Voo .
c=[a(d) 88 efd) el D] (60) pdy i =——7 (Rycos (&) — X;sin () 71

The nonlinear 4-th order state equations from eq. (55)-(58)

are written in the state space form as ody =_Z;§°( X,cos(8) + R;sin(8)) (72)
#(8) = F+ gus(d) 61
. ' Voo -
AD=h ©62) pdy + =2, (Xpc08 () + Rysin (&) 73
where f:= (A £ £ f)T
¢ Ve .
L.t 1  2dy =2, (Rycos (8) — Xsin () 74
_ @) —1) ' ’
T e(t)+M‘ d(t) M5:=Yd (75)
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pds =Y, (76)
pd; =x,Y, an
pds 1 =1—x,Y, (78)
pdy + =(vg— x4 )pd) + (v, + %0 )pdy 79
bdy = Ylva— x;z'iq) + Yq( Utrxqid) +1, @®0)
pdy == (xg=xpdy 81)
do
bpdy i =— T_l , . (82)
do
bl =— (83)
13 Tda
pdy i =— —1{4 w,pdy (84)
pdis 1 =— _1}4 (pdis /i + pduafs + pdwbdis) (85)
Py : = =7 (s + piref s bty (86)
pdyg 1=~ _j}l‘(ﬁdmpdm) 87
Voo .
pdig =7(R2cos(6)+Xlsm(6)) (88)
Ve .
Py :=_—ZZ—(—X25m(8)+R1cos(8)) 89

deO : :(yd— xdlq)deZ + 2(xq— xd) pdlpdz + (Uq"‘" qud)pdz.'i (90)

pdy 1 =Y (x,— x)pdy+ Y £x,— x)pdy+ pdy : 61
by 1= Yq(xq—x;j)bdl‘*'ﬁdz"‘ Yd(xq_x;i)i)dz 92)
Py 1 =2Y (14 (x,— 2 Y) " 93)

The pa in above equations represents partial derivatives.
The control input based on NFL is

L3n

1
L% + (D) (%4)

LL%

u(D=g(x(),v()) :=—

_ _—Il pdy_pdiz pdi3 pdvl /= ()]
[ pdy pdy pdiz pdulg

95

VI. Data Analysis

In this section, the data analysis is presented.
The nominal data of the system, the operating conditions
and the conventional PSS are listed in Appendix Al-A3.
The values of A, B, By, Ci, Cj;, Dy, Dy and D, are

0  —0.062 —0.1052 0

A— 376991 0 0 0
0 —0.0679 —0.1957 0.1289
0 9.4 -850 —20

B,=10.18 0 0 017 By=[00 0 1000]”

C, = diag(1001, 0,0,0) - Cy=[100 0],
Dy, = diag(0,0,0,0) Dp=I[100.01"

A positive scalar 7 is set to 1.2.

The H, controller gain is K,=[1088.3, 1.30, —0.40, 0.0].
The H., estimator gain is K,=[0.108, 0.0, 0.0, 0.0].

The sliding surface gain is

G=1.0e+5[—2.1529, —0.0201, 0.0383, 0.0000]7

VII. Nonlinear Time-domain Simulation Test

In this section, the nonlinear time-domain simulation
studies are done to evaluate the performance "of the
proposed NFL- H_/SMC-PSS. '

A fault is applied to verify the performance of the
proposed controller under transient condition. The fault at
about 2.0 sec is assumed to occur at the midpoint of the
simple system in Fig. 2 and then is cleared after 0.05 sec
and the line is reclosed. In Fig. 2, Z2 is the total
impedance of faulted line and 4=0.5 puts the fault in the
middle of the line.

Synchronous Generator

Double transmission line
LVt Vinf
cireuit
breaker

Excitation Controller

Fig. 2. Block diagram of an overall power system.

1. A 3-cycle line-to-ground fault simulation test



JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 3, NO. 2, 1998 199

1.010 -
1.006 -

ity(p.u.)

1.002 -

0.998 +

0.994 +

Angular veloc

0.990 -t e+
01 23 456 7 8 9101112

time(sec.)

(1) Angual velocity

39.30 +
39.00
38.70 +
38.40 +
38.10 ¢
37.80 ¢
37.50 I

Torque angle(deg.)

time(sec.)

(2) Torque angle

Fig. 3. Normal load operation. (a: no control b: conven-
tional PSS c¢: NFL- H,C-PSS d: proposed NFL- H,/
SMC-PSS)

Fig. 3 shows the angular velocity waveform in (1) and
the torque angle waveform in (2) without any control,
with the conventional Lead-Lag PSS, with the NFL- H,
C-PSS, and with the proposed NFL- H../SMC-PSS with a
3-cycle line-to-ground fault under normal load operation.

Although the NFL- H,,C-PSS can stabilize the system, it
is shown that the proposed NFL- H,/SMC-PSS exhibits
better damping properties.

Because the conventional PSS in Fig. 3 (1)-(2) gives
poorly damped response, the conventional PSS will not
consider again in the following discussions.

2. Parameter variation test

Case I : A parameter variations (20% over-estimation) of
the AVR gain K4

In Fig. 4, it is shown that these results demonstrate the
insensitivity of the NFL- H.C-PSS in (1) and the proposed
NFL- H,/SMC-PSS in (2) to parameter variation of the
AVR gain K,

It is shown that the proposed NFL- H,./SMC-PSS
exhibits better robust properties than the NFL- H,.C-PSS.

1.010 -
1.006 +
1.002 +
0.998 +
0.994 +

Angular velocity(p.u.)

0.990

time(sec.)

(1) NFL- H..C-PSS

1.010 +
1.006 +
1.002 +
0.998

0.994 1

Angular velocity(p.u.)

0990 +——+—+—+—+—+—+—+—+—+—+—
0 1 2 3 4 5 6 7 8 9 1011 12

time(sec.)

(2) proposed NFL- H.,/SMC-PSS

Fig. 4. Angular velocity waveforms for parameter variation
of the AVR gain KA.(e :

normal f : parameter
variation) i

Case II : A parameter variations (20% over-estimation) of
the inertia moment M.

Fig. 5 shows the angular velocity waveform in case of
the parameter variations (20% over-estimation) of the
inertia moment M of the generating unit in the system.

Also, it is shown that the proposed NFL- H./SMC-PSS
in Fig. 5 (2) exhibits better damping properties and is less
sensitive to variations of the inertia moment M as
compared to the NFL- H,C-PSS in Fig. 5 (1).

1.010 +
1.006 +
1.002 +
0.998 +
0.994 +

Angular velocity(p.u.)

0.990

time(sec.)

(1) NFL- H,,C-PSS
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1.010 +
1.006 +
1.002 +

0.998
0.994

Angular velocity(p.u.)

0.990

01 2 3 4 5 6 7 8 9 101112

time(sec.)

(2) proposed NFL- H,/SMC-PSS

Fig. 5. Angular velocity waveforms for parameter variation
of the inertia moment M. (e : normal f : para-
meter variation)

VIII. Conclusions

The standard DGKF’'s H. controller ( H.,C) has been
extended to the nonlinear feedback linearization- H../sliding
mode controller (NFL- H,/SMC) and has been applied as
the nonlinear power system stabilizer (PSS) for the
improvement of a transient stability in a nonlinear power
system.

The main results are as follows :

1. Combining the H, estimator with the nonlinear feed-
back linearization-sliding mode controller (NFL-SMC).
2. Obtaining a NFL- H,./SMC, to obtain smooth control as
the linearized controller in a linear system, to tackle the
problem of the unmeasurable state variables as in the
conventional SMC, and to improve the time-domain

performance under a worst case. .

3. Improving in the sense of time-domain dynamic
performance and robustness in case of a 3-cycle
line-to-ground fault, and in case of the parameter
variations for the AVR gain K4 and for the inertia
moment M.
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Appendix

The nominal data of the system, the operating conditions
and the conventional PSS are listed in Table A.1-A.3.

Table A.1 Generator data and initial condition data

M T, D

X4 X4 X, @, E g vV,

926 776 30 0973 019 055 377 075 0025 1056

Table A.2 Excitation system data and line data

Ka Ty

R X G B

50.0 0.05

0.034 0.997 0.249 0.262

Table A.3 Conventional Lead-Lag PSS data

K T, T T, T,

0.009

0.6851 0.1

0.06851 001
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