• 제목/요약/키워드: Window Layer

검색결과 352건 처리시간 0.02초

An Enhanced UBR+(EUBR+) scheme to improve the performance of TCP-over-ATM

  • Kim, Chul;Kim, Young-Tak
    • 한국통신학회논문지
    • /
    • 제26권9A호
    • /
    • pp.1535-1541
    • /
    • 2001
  • TCP is the most widely-used transport layer protocol in current Internet, while ATM technology is used to increase the data communication speed at data link layer and network layer. In the TCP-over-ATM architecture, the most significant problems are (i) the partial packet discarding problem, and (ii) the TCP window timeout problem. Several approaches have been proposed to solve the partial packet discard problem and the timeout problem individually, but none of them considered the two problems together. In this paper, we propose an enhanced UBR+ scheme which supports fairness among the TCP connections using UBR+ scheme, and provides protection of damaged VC from the multiple packet losses in the same TCP sliding window. To analyze its performance, we simulate the proposed scheme using OPNET. The simulation results show that the proposed scheme supports fairness, and also increases the throughput by reducing the probability of multiple cell losses in the same TCP window.

  • PDF

MoOx 기반의 고성능 투명 광검출기 (MoOx-Windowed High-Performing Transparent Photodetector)

  • 박왕희;이경남;김준동
    • 한국전기전자재료학회논문지
    • /
    • 제30권6호
    • /
    • pp.387-392
    • /
    • 2017
  • A high-performing all-transparent photodetector was created by configuring a $MoO_x$/NiO/ZnO/ITO structure on a glass substrate. The ITO bottom layer was applied as a back contact. To achieve the transparent p/n junction, p-type NiO was coated on the n-type ZnO layer. Reactive sputtering was used to spontaneously form the ZnO or NiO layer. In order to improve the transparent photodetector performance, the functional $MoO_x$ window layer was used. Optically, the $MoO_x$ window provided a refractive index layer (n=1.39) lower than that of NiO (n=2), increasing the absorption of the incident light wavelengths (${\lambda}s$). Moreover, the $MoO_x$ window can provide a lower sheet resistance to improve the carrier collection for the photoresponses. The $MoO_x$/NiO/ZnO/ITO device showed significantly better photoresponses of 877.05 (at ${\lambda}$=460nm), 87.30 (${\lambda}$=520 nm), and 30.38 (${\lambda}$=620 nm), compared to 197.28 (${\lambda}$=460 nm), 51.74 (${\lambda}$=520 nm) and 25.30 (${\lambda}$=620 nm) of the NiO/ZnO/ITO device. We demonstrated the high-performing transparent photodetector by using the multifunctional $MoO_x$ window layer.

투명 전도막 개선을 통한 Cu(Inx,Ga1-x)Se2 박막태양전지 효율 향상에 관한 연구 (Improvement of Efficiency of Cu(Inx,Ga1-x)Se2 Thin Film Solar Cell by Enhanced Transparent Conductive Oxide Films)

  • 김기림;손경태;김민영;조성희;신준철;임동건
    • 한국전기전자재료학회논문지
    • /
    • 제27권4호
    • /
    • pp.203-208
    • /
    • 2014
  • In this study, Sputtering method was used to grow Al-dopes ZnO films on a CIGS absorber layer, in order to examine the effect of TCO on properties of CIGS solar cell devices. Structural, electrical and optical properties were investigated by varied thickness of Al-dopes ZnO films. Also, relation to the application as a window layer in CIGS thin film solar cell were studied. It was found that the electrical and structural properties of ZnO:Al film improved with increasing its thickness. However, the optical properties degraded. Jsc of the fabricated CIGS based solar cells was significantly influenced by the variation of the ZnO:Al window layer thickness. Because ZnO:Al window layer is one of the Rs factors in CIGS solar cell. Rs has the biggest influence on efficiency characteristic. In order to obtain high efficiency of CIGS solar cell, ZnO:Al window layer should be fabricated with electrically and optically optimized.

$ZrO_2$$CeO_2$ 절연체를 이용한 BLT/절연체/Si 구조의 특성 (Characterization of BLT/insulator/Si structure using $ZrO_2$ and $CeO_2$ insulator)

  • 이정미;김경태;김창일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 센서 박막재료 반도체 세라믹
    • /
    • pp.186-189
    • /
    • 2003
  • The MFIS capacitors were fabricated using a metalorganic decomposition method. Thin layers of $ZrO_2$ and $CeO_2$ were deposited as a buffer layer on Si substrate and BLT thin films were used as a ferroelectric layer. The electrical and structural properties of the MFIS structure were investigated. X -ray diffraction was used to determine the phase of the BLT thin films and the quality of the $ZrO_2$ and $CeO_2$ layer. AES show no interdiffusion and the formation of amorphous $SiO_2$ layer is suppressed by using the $ZrO_2$ and $CeO_2$ film as buffer layer between the BLT film and Si substrate. The width of the memory window in the C-V curves for the $BLT/ZrO_2/Si$ and $BLT/CeO_2/Si$ structure is 2.94 V and 1.3V, respectively. The experimental results show that the BLT-based MFIS structure is suitable for non-volatile memory FETs with large memory window.

  • PDF

축소모형주택을 이용한 전통창호의 차음성능에 관한 실험적 연구 (An Experimental Study on the Sound Insulation Performance of Korean Traditional Windows by Using a Scale Model House)

  • 신훈;장길수;송민정
    • 한국주거학회논문집
    • /
    • 제17권5호
    • /
    • pp.47-54
    • /
    • 2006
  • This study aims to evaluate the sound insulation performance of Korean traditional paper(Hanji) windows as a material of environmental friendly building. Six types of traditional windows with 4 types of traditional window positions, were installed in l/2.5 scale model house. And then according to KS F 2235, comparative sound level differences between outdoor and indoor were measured. The main results are as follows; 1) TL(Transmission Loss) of Korean traditional paper windows, which cover one eighth of total balcony window, are ranged from 15 to 19 dB(A) in the living room and from 8 to 11 dB(A) in the balcony space. 2) TL of Korean traditional paper windows, which cover one fourth of total balcony window, are ranged from 10 to 19 dB(A) in the living room and from 8 to 10 dB(A) in the balcony space. 3) TL of Korean traditional windows with one side-one layer paper is ranged from 10 to 21 dB(A) and two side-one layer paper is 15 to 23 dB(A) and two side-two layer paper is 19 to 23 dB(A) respectively.

Improvement of Storage Performance by HfO2/Al2O3 Stacks as Charge Trapping Layer for Flash Memory- A Brief Review

  • Fucheng Wang;Simpy Sanyal;Jiwon Choi;Jaewoong Cho;Yifan Hu;Xinyi Fan;Suresh Kumar Dhungel;Junsin Yi
    • 한국전기전자재료학회논문지
    • /
    • 제36권3호
    • /
    • pp.226-232
    • /
    • 2023
  • As a potential alternative to flash memory, HfO2/Al2O3 stacks appear to be a viable option as charge capture layers in charge trapping memories. The paper undertakes a review of HfO2/Al2O3 stacks as charge trapping layers, with a focus on comparing the number, thickness, and post-deposition heat treatment and γ-ray and white x-ray treatment of such stacks. Compared to a single HfO2 layer, the memory window of the 5-layered stack increased by 152.4% after O2 annealing at ±12 V. The memory window enlarged with the increase in number of layers in the stack and the increase in the Al/Hf content in the stack. Furthermore, our comparison of the treatment of HfO2/Al2O3 stacks with varying annealing temperatures revealed that an increased annealing temperature resulted in a wider storage window. The samples treated with O2 and subjected to various γ radiation intensities displayed superior resistance. and the memory window increased to 12.6 V at ±16 V for 100 kGy radiation intensity compared to the untreated samples. It has also been established that increasing doses of white x-rays induced a greater number of deep defects. The optimization of stacking layers along with post-deposition treatment condition can play significant role in extending the memory window.

고효율 실리콘 박막태양전지를 위한 신규 수소저감형 비정질실리콘 산화막 버퍼층 개발 (A Novel Hydrogen-reduced P-type Amorphous Silicon Oxide Buffer Layer for Highly Efficient Amorphous Silicon Thin Film Solar Cells)

  • 강동원
    • 전기학회논문지
    • /
    • 제65권10호
    • /
    • pp.1702-1705
    • /
    • 2016
  • We propose a novel hydrogen-reduced p-type amorphous silicon oxide buffer layer between $TiO_2$ antireflection layer and p-type silicon window layer of silicon thin film solar cells. This new buffer layer can protect underlying the $TiO_2$ by suppressing hydrogen plasma, which could be made by excluding $H_2$ gas introduction during plasma deposition. Amorphous silicon oxide thin film solar cells with employing the new buffer layer exhibited better conversion efficiency (8.10 %) compared with the standard cell (7.88 %) without the buffer layer. This new buffer layer can be processed in the same p-chamber with in-situ mode before depositing main p-type amorphous silicon oxide window layer. Comparing with state-of-the-art buffer layer of AZO/p-nc-SiOx:H, our new buffer layer can be processed with cost-effective, much simple process based on similar device performances.

EnergyPlus에 적용된 Simple Window Model의 한계와 개선에 관한 연구 (A Study on the Limitation and Improvement of Simple Window Model applied to EnergyPlus)

  • 김태호;고성호
    • 설비공학논문집
    • /
    • 제29권10호
    • /
    • pp.515-529
    • /
    • 2017
  • EnergyPlus, which is widely used in various fields, provides Simple Window Model, a window model that can be used practically. However, the results of building load using the model are different from those of the standard model. The main cause of the deviation by Simple Window Model was analyzed to be due to the assumption that all windows were considered as single layer. The purpose of this study is to propose a window model that improves the cause of deviation by Simple Window Model and can be easily calculated from the algebraic relations. The proposed window model solved the heat balance equation algebraically by using seven window characteristic coefficients. The coefficient relationships consisted of the heat transmission coefficient and solar heat gain coefficient as input parameters make practical use and calculation possible. As a result of comparing the deviation between each window model by implementing the dynamic analysis method, the proposed window model showed that the deviation of the total heating/cooling energy consumption was reduced to 1/3 compared to Simple Window Model for one year. Although the maximum energy consumption did not show any significant improvement, the indoor temperature evaluation showed significantly reduced deviation.

윈도우 영역을 갖는 측방향으로 경사진 SCH-SLD의 설계에 관한 연구 (A Study on the Design of Laterally Tilted SCH-SLD with Window Region)

  • 황상구;김정호;김운섭;김동욱;안세경;홍창희
    • 한국정보통신학회논문지
    • /
    • 제5권4호
    • /
    • pp.777-790
    • /
    • 2001
  • 광통신용 광섬유의 최저손실 파장영역인 1.55w에서 고출력으로 안정하게 동작하는 SLD를 설계하기 위하여 이론적인 해석을 수행하였다. 활성영역과 SCH층의 재료는 Int-xGaxAsyPl-y를 이용하였다. 활성영역의 측방향과 횡방향 모드해석으로부터 단일모드 고출력 동작을 위한 광전력분포와 광가둠계수를 구하였으며, 이들 계산으로부터 최대 광가둠계수를 얻기 위한 SCH층의 조성과 두께를 계산하였다. 낮은 반사도를 얻기 위하여 후면 에 윈도우 영역을 두었고 활성영역과 윈도우 영역의 계면이 측방향으로 각도를 가지게 하였으며 가우시안빔 근사와 모드해석으로부터 반사도를 계산하였다. $1.3\mum$ InGaAsP를 SCH층으로 하였을 때 최대의 광가둠계수를 얻기 위한 SCH층의 두께는$0.08\mum$정도이었다. 10-4정도의 반사도를 얻기 위해서는 활성층의 두께를 $0.2\mum$, SCH 층의 두께를 $0.08\mum$ 로 하였을 때 무반사코팅을 하지 않을 경우 윈도우 영역의 길이는 $100\mum$ 정도이고, 반사도 1% 정도의 무반사 코팅을 할 경우 $10\mum$ 정도가 된다. 측면 경사각이 $10~15^{\circ}$이면 반사도는 10-3정도가 된다. 이들 결과로부터 AR코팅을 하지 않고도 윈도우 영역의 길이와 측면 경사각을 적당히 조절한다면 안정적으로 동작하는 SLD의 제작이 가능하다는 것을 알 수 있다.

  • PDF

윈도우 주의 모듈 기반 트랜스포머를 활용한 이미지 분류 방법 (Window Attention Module Based Transformer for Image Classification)

  • 김상훈;김원준
    • 방송공학회논문지
    • /
    • 제27권4호
    • /
    • pp.538-547
    • /
    • 2022
  • 최근 소개된 트랜스포머(Transformer)를 이용한 이미지 분류 방법들은 기존 합성곱 신경망 기반 방법 대비 괄목할 만한 성능 향상을 보여주고 있다. 지역적 특성을 효과적으로 고려하기 위해 이미지 영역을 복수의 윈도우 영역으로 나누어 트랜스포머를 적용하는 방법에 대한 연구가 활발히 진행되어 왔으나, 윈도우 간 관계 및 중요도에 대한 학습은 여전히 부족한 상황이다. 본 논문에서는 이러한 문제점을 극복하기 위해 각 윈도우의 중요도를 학습에 반영할 수 있는 트랜스포머 구조를 제안한다. 제안하는 방법은 각 윈도우 영역에 대한 자기주의(Self-attention) 연산을 기반으로 압축과 완전 연결 계층(Fully Connected Layer)을 통해 각 윈도우 영역의 중요도를 계산한다. 계산된 중요도는 윈도우 영역들 간의 관계를 학습한 가중치로써 각 윈도우 영역에 곱해져 특징 값을 재조정 한다. 실험 결과를 통해 제안하는 방법이 기존 트랜스포머 기반 방법의 성능을 효과적으로 향상 시킬 수 있음을 보인다.