DOI QR코드

DOI QR Code

Improvement of Storage Performance by HfO2/Al2O3 Stacks as Charge Trapping Layer for Flash Memory- A Brief Review

  • Fucheng Wang (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Simpy Sanyal (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Jiwon Choi (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Jaewoong Cho (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Yifan Hu (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Xinyi Fan (Interdisciplinary Program in Photovoltaic System Engineering, Sungkyunkwan University) ;
  • Suresh Kumar Dhungel (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Junsin Yi (College of Information and Communication Engineering, Sungkyunkwan University)
  • Received : 2023.01.05
  • Accepted : 2023.03.07
  • Published : 2023.05.01

Abstract

As a potential alternative to flash memory, HfO2/Al2O3 stacks appear to be a viable option as charge capture layers in charge trapping memories. The paper undertakes a review of HfO2/Al2O3 stacks as charge trapping layers, with a focus on comparing the number, thickness, and post-deposition heat treatment and γ-ray and white x-ray treatment of such stacks. Compared to a single HfO2 layer, the memory window of the 5-layered stack increased by 152.4% after O2 annealing at ±12 V. The memory window enlarged with the increase in number of layers in the stack and the increase in the Al/Hf content in the stack. Furthermore, our comparison of the treatment of HfO2/Al2O3 stacks with varying annealing temperatures revealed that an increased annealing temperature resulted in a wider storage window. The samples treated with O2 and subjected to various γ radiation intensities displayed superior resistance. and the memory window increased to 12.6 V at ±16 V for 100 kGy radiation intensity compared to the untreated samples. It has also been established that increasing doses of white x-rays induced a greater number of deep defects. The optimization of stacking layers along with post-deposition treatment condition can play significant role in extending the memory window.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.NRF-2022R1A4A1028702).

References

  1. D. Spassov, A. Paskaleva, T. A. Krajewski, E. Guziewicz, G. Luka, and T. Ivanov, Phys. Status Solidi A, 215, 1700854 (2018). [DOI: https://doi.org/10.1002/pssa.201700854]
  2. C. Zhao, C. Z. Zhao, S. Taylor, and P. R. Chalker, Materials, 7, 5117 (2014). [DOI: https://doi.org/10.3390/ma7075117]
  3. D. Spassov, A. Paskaleva, E. Guziewicz, W. Wozniak, T. Stanchev, T. Ivanov, J. Wojewoda-Budka, and M. Janusz-Skuza, Proc. 21st International School on Condensed Matter Physics (ISCMP) (IOP Publishing Ltd, Varna, Bulgaria, 2021), p. 012038. [DOI: https://doi.org/10.1088/1742-6596/1762/1/012038]
  4. K. Ramkumar, V. Prabhakar, A. Keshavarzi, I. Kouznetsov, and S. Geha, MRS Adv., 2, 209 (2017). [DOI: https://doi.org/10.1557/adv.2017.144]
  5. A. Skeparovski, N. Novkovski, A. Paskaleva, and D. Spassov, Proc. 2021 IEEE 32nd International Conference on Microelectronics (MIEL) (IEEE, Nis, Serbia, 2021) p. 153. [DOI: https://doi.org/10.1109/MIEL52794.2021.9569062]
  6. M. Specht, H. Reisinger, F. Hofmann, T. Schulz, E. Landgraf, R. J. Luyken, W. Rosner, M. Grieb, and L. Risch, Solid-State Electron., 49, 716 (2005). [DOI: https://doi.org/10.1016/j.sse.2004.09.003]
  7. F. Cerbu, O. Madia, D. V. Andreev, S. Fadida, M. Eizenberg, L. Breuil, J. G. Lisoni, J. A. Kittl, J. Strand, A. L. Shluger, V. V. Afanas'ev, M. Houssa, and A. Stesmans, Appl. Phys. Lett., 108, 222901 (2016). [DOI: https://doi.org/10.1063/1.4952718]
  8. J. Kim, J. Kim, E. C. Cho, and J. Yi, ECS J. Solid State Sci. Technol., 10, 044003 (2021). [DOI: https://doi.org/10.1149/2162-8777/abf2e0]
  9. H. Zhu, J. E. Bon evich, H. Li, C. A. Richter, H. Yuan , O. Kirillov, and Q. Li, Appl. Phys. Lett., 104, 233504 (2014). [DOI: https://doi.org/10.1063/1.4883717]
  10. X. D. Huang, R. P. Shi, and P. T. Lai, Appl. Phys. Lett., 104, 162905 (2014). [DOI: https://doi.org/10.1063/1.4873388]
  11. T. M. Pan and W. W. Yeh, IEEE Trans. Electron Devices, 55, 2354 (2008). [DOI: https://doi.org/10.1109/TED.2008.927401]
  12. H. W. You and W. J. Cho, Appl. Phys. Lett., 96, 093506 (2010). [DOI: https://doi.org/10.1063/1.3337103]
  13. D. Spassov, A. Paskaleva, T. A. Krajewski, E. Guziewicz, and G. Luka, Nanotechnology, 29, 505206 (2018). [DOI: https://doi.org/10.1088/1361-6528/aae4d3]
  14. Y. N. Tan, W. K. Chim, W. K. Choi, M. S. Joo, T. H. Ng, and B. J. Cho, Proc. IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004 (IEEE, San Francisco, USA, 2004) p. 889. [DOI: https://doi.org/10.1109/IEDM.2004.1419323]
  15. Y. N. Tan, W. K. Chim, W. K. Choi, M. S. Joo, and B. J. Cho, IEEE Trans. Electron Devices, 53, 654 (2006). [DOI: https://doi.org/10.1109/TED.2006.870273]
  16. S. Maikap, P. J. Tzeng, T. Y. Wang, H. Y. Lee, C. H. Lin, C. C. Wang, L. S. Lee, J. R. Yang, and M. J. Tsai, Jpn. J. Appl. Phys., 46, 1803 (2007). [DOI: https://doi.org/10.1143/JJAP.46.1803]
  17. C. Zhu, Z. Huo, Z. Xu, M. Zhang, Q. Wang, J. Liu, S. Long and M. Liu, Appl. Phys. Lett., 97, 253503 (2010). [DOI: https://doi.org/10.1063/1.3531559]
  18. X. Lan, X. Ou, Y. Cao, S. Tang, C. Gong, B. Xu, Y. Xia, J. Yin, A. Li, F. Yan, and Z. Liu, J. Appl. Phys., 114, 044104 (2013). [DOI: https://doi.org/10.1063/1.4816463]
  19. W. Xiao, C. Liu, Y. Peng, S. Zheng, Q. Feng, C. Zhang, J. Zhang, Y. Hao, M. Liao, and Y. Zhou, Nanoscale Res. Lett., 14, 254 (2019). [DOI: https://doi.org/10.1186/s11671-019-3063-2]
  20. Z. Cui, D. Xin, J. Park, J. Kim, K. Agrawal, E. C. Cho, and J. Yi, J. Korean Inst. Electr. Electron. Mater. Eng., 33, 445 (2020). [DOI: https://doi.org/10.4313/JKEM.2020.33.6.445]
  21. X. Lan, X. Ou, Y. Lei, C. Gong, Q. Yin, B. Xu, Y. Xia, J. Yin, and Z. Liu, Appl. Phys. Lett., 103, 192905 (2013). [DOI: https://doi.org/10.1063/1.4829066]
  22. A. Paskaleva, M. Rommel, A. Hutzler, D. Spassov, and A. J. Bauer, ACS Appl. Mater. Interfaces, 7, 17032 (2015). 17032-17043. [DOI: https://doi.org/10.1021/acsami.5b03071]
  23. D. Spassov and A. Paskaleva, Proc. 2021 IEEE 32nd International Conference on Microelectronics (MIEL) (IEEE, Nis, Serbia, 2021), p. 149. [DOI: https://doi.org/10.1109/MIEL52794.2021.9569085]
  24. J. Strand, O. A. Dicks, M. Kaviani, and A. L. Shluger, Microelectron. Eng., 178, 235 (2017). [DOI: https://doi.org/10.1016/j.mee.2017.05.012]
  25. S. Maikap, A. Das, T. Y. Wang, T. C. Tien, and L. B. Chang, J. Electrochem. Soc., 156, K28 (2009). [DOI: https://doi.org/10.1149/1.3070660]
  26. Z. Hou, Z. Wu, and H. Yin, ECS J. Solid State Sci. Technol., 7, Q229 (2018). [DOI: https://doi.org/10.1149/2.0011812jss]
  27. D. Spassov, A. Paskaleva, E. Guziewicz, V. Davidovic, S. Stankovic, S. Djoric-Veljkovic, T. Ivanov, T. Stanchev, and N. Stojadinovic, Materials, 14, 849 (2021). [DOI: https://doi.org/10.3390/ma14040849]
  28. J. Yoo, S. Kim, W. Jeon, A. Park, D. Choi, and B. Choi, IEEE Electron Device Lett., 40, 1427 (2019). [DOI: https://doi.org/10.1109/led.2019.2932007]
  29. H. Zhao, Z. Zheng, H. Zhu, L. Wang, B. Li, Z. Zhang, S. Wang, Q. Yuan, J. Jiao, IEEE Trans. Device Mater. Reliab., 23, 109 (2023). [DOI: https://doi.org/10.1109/tdmr.2023.3234325]