• Title/Summary/Keyword: Winch system

Search Result 78, Processing Time 0.036 seconds

Ship s Maneuvering and Winch Control System with Voice Instruction Based Learning (음성지시에 의한 선박 조종 및 윈치 제어 시스템)

  • Seo, Ki-Yeol;Park, Gyei-Kark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.517-523
    • /
    • 2002
  • In this paper, we propose system that apply VIBL method to add speech recognition to LIBL method based on human s studying method to use natural language to steering system of ship, MERCS and winch appliances and use VIBL method to alternate process that linguistic instruction such as officer s steering instruction is achieved via ableman and control steering gear, MERCS and winch appliances. By specific method of study, ableman s suitable steering manufacturing model embodies intelligent steering gear controlling system that embody and language direction base studying method to present proper meaning element and evaluation rule to steering system of ship apply and respond more efficiently on voice instruction of commander using fuzzy inference rule. Also we embody system that recognize voice direction of commander and control MERCS and winch appliances. We embodied steering manufacturing model based on ableman s experience and presented rudder angle for intelligent steering system, compass bearing arrival time, evaluation rule to propose meaning element of stationary state and correct steerman manufacturing model rule using technique to recognize voice instruction of commander and change to text and fuzzy inference. Also we apply VIBL method to speech recognition ship control simulator and confirmed the effectiveness.

A Three-unit Modular Climbing Robot for Overcoming Obstacles on the Facade of Buildings (건물 외벽 장애물 극복을 위한 3단 모듈형 승월로봇)

  • Lee, Cheonghwa;Chu, Baeksuk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.114-123
    • /
    • 2017
  • This paper introduces a novel obstacle-climbing robot that moves on the facade of buildings and its climbing mechanism. A winch system set on the top of the building makes the vertical motion of the robot while it climbs obstacles that protrude from the wall surface. The obstacle-climbing robot suggested in this research is composed of a main platform and three modular climbing units. Various sensors installed on each climbing unit detect the obstacles, and the robot controller coordinates the three units and the winch to climb the obstacles using the obstacle-climbing mechanism. To evaluate the performance of the developed robot prototype, a test bed, which consists of an artificial wall and an obstacle, was manufactured. The obstacle size and the time required to climb the obstacle were selected as the performance indices, and extensive experiments were carried out. As a result, it was confirmed that the obstacle-climbing robot can climb various-sized obstacles with a reasonable speed while it moves on the wall surface.

Turn-Tree Derrick (턴트리 데릭크)

  • Y.J.,Ha
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.18 no.3
    • /
    • pp.59-63
    • /
    • 1981
  • With substitution with a delicate turn-tree instead of a long permanent cross-tree that is usally located on the derrick post, it is possible to get a large working range of the slewing angle 240 degree and also to decrease the slewing time of the derrick boom, comparing to the exisiting cargo gear system which has the same capacity of slewing winch.

  • PDF

Real-time monitoring of grab dredging operation using ECDIS (ECDIS에 의한 grab 준설작업의 실시간 모니터링에 관한 연구)

  • Jung, Ki-Won;Lee, Dae-Jae;Jeong, Bong-Kyu;Lee, Yoo-Won
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.43 no.2
    • /
    • pp.140-148
    • /
    • 2007
  • This paper describes on the real-time monitoring of dredging information for grab bucket dredger equipped with winch control sensors and differential global positioning system(DGPS) using electronic chart display and information system(ECDIS). The experiment was carried out at Gwangyang Hang and Gangwon-do Oho-ri on board M/V Kunwoong G-16. ECDIS system monitors consecutively the dredging's position, heading and shooting point of grab bucket in real-time through 3 DGPS attached to the top bridge of the dredger and crane frame. Dredging depth was measured by 2 up/down counter fitted with crane winch of the dredger. The depth and area of dredging in each shooting point of grab bucket are displayed in color band. The efficiency of its operation can be ensured by adjusting the tidal data in real-time and displaying the depth of dredging on the ECDIS monitor. The reliance for verification of dredging operation as well as supervision of dredging process was greatly enhanced by providing three-dimensional map with variation of dredging depth in real time. The results will contribute to establishing the system which can monitor and record the whole dredging operations in real-time as well as verify the result of dredging quantitatively.

The development of Flying System using the winch (윈치를 이용한 플라잉 시스템 개발)

  • Lee, SangWon;Joung, KwanYoung;Kwon, OHung;Won, DaHee
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2011.05a
    • /
    • pp.503-504
    • /
    • 2011
  • 본 논문에서는 공연이나 영화 촬영에서 사람과 물건을 매달거나 스포츠 중계를 위해 카메라를 매달고서 고속 촬영하는 시스템에 적용되는 윈치 시스템을 소개하고 이때 사용되는 다축 윈치 시스템의 하드웨어 제작 및 제어를 서술한다.

  • PDF

A Study on Load Vibration Control in Crane Operating

  • Le, Nhat-Binh;Lee, Dong-Hun;Kim, Tae-Wan;Kim, Young-Bok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2017.11a
    • /
    • pp.58-60
    • /
    • 2017
  • In the offshore crane system, the requirements on the operating safety are extremely high due to many external factors. This paper describes a model for studying the dynamic behavior of the offshore crane system. The obtained model allows to evaluate the fluctuations of the load arising from the elasticity of the rope. Especially, in this paper, the authors design control system in which just winch rotation angle and rope tension are used without load position information. The controller design based on input-output feedback linearization theory is presented which can handle the effect of the elasticity of the rope and track the load target trajectory input. Besides that, a full order observer is designed to estimate unknown states. Finally, By the experiment results, the effectiveness of proposed control method is evaluated and verified.

  • PDF

Heave Compensation System Design for Offshore Crane based on Input-Output Linearization

  • Le, Nhat-Binh;Kim, Byung-Gak;Kim, Young-Bok
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.27-34
    • /
    • 2017
  • A heave motion of the offshore crane system with load is affected by unpredictable external factors. Therefore the offshore crane must satisfy rigorous requirements in terms of safety and efficiency. This paper intends to reduce the heave displacement of load position which is produced by rope extension and sea wave disturbance in vertical motion. In this system, the load position is compensated by the winch actuator control. The rope is modeled as a mass-damper-spring system, and a controller is designed by the input-output linearization method. The model system and the proposed control method are evaluated on the simulation results.

Load Position and Residual Vibration Control of an Offshore Crane System Based on Input-Output Linearization Theory

  • Le, Nhat-Binh;Lee, Kwon-Soon;Kim, Young-Bok
    • Journal of Navigation and Port Research
    • /
    • v.41 no.5
    • /
    • pp.337-344
    • /
    • 2017
  • In the offshore crane system, the requirements on the operating safety are extremely high due to many external factors. Rope extension is one of the factors producing vertical vibration of load. In this study, the load is carried by the motor-winch actuator control and the rope is modeled as a mass-damper-spring system. To control the load position and suppress the vertical vibration of the load, a control system based on input-output linearization method is proposed. By the simulation and experiment results with pilot crane model, the effectiveness of proposed control method is evaluated and verified.

Multibody Dynamics Simulation and Experimental Study on the Tagline Control of a Cargo Suspended by a Floating Crane (해상크레인으로 인양하는 중량물의 Tagline 제어를 위한 다물체계 동역학 시뮬레이션 및 실험)

  • Ku, Nam-Kug;Lee, Kyu-Yuel;Kwon, Jung-Han;Cha, Ju-Hwan;Ham, Seung-Ho;Ha, Sol;Park, Kwang-Phil
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.13-22
    • /
    • 2010
  • This paper describes tagline PD control for reduction of motion for the heavy cargo(load) suspended by a floating crane. The equations of motion are set up considering the 6-degree-of-freedom floating crane and the 6-degree-of-freedom load based on multi-body system dynamics. The tagline mechanism is applied to floating crane to control motion of the heavy cargo(load). The winch, mounted on the deck of floating crane, is used to control the tension of tagline. To generate control force, PD control algorithm is applied. Numerical simulation and experiment is executed to verify the tagline control mechanism. The numerical simulation and experiment shows that the tagline control mechanism reduces the motion of the load suspended by a floating crane.

Development of Tethered-Balloon Package System for Vertical Distribution Measurement of Atmospheric Aerosols (Tethered-Balloon Package System 개발 및 대기 에어로졸의 연직 분포 측정)

  • Eun, Hee Ram;Lee, Hong Ku;Lee, Yang Woo;Ahn, Kang-Ho
    • Particle and aerosol research
    • /
    • v.9 no.4
    • /
    • pp.253-260
    • /
    • 2013
  • For a vertical atmospheric aerosol distribution measurement, a very compact and light particle sampling package is developed. This package includes a compact optical particle counter (Hy-OPC), a light and small condensation particle counter (Hy-CPC), sensors (GPS, wind velocity, temperature, humidity), and a communication and system control board. This package is attached to He balloon and the altitude is controlled by a winch. Using this system the vertical particle size distribution was measured. The test results showed that the ground base atmospheric particle measurement result may be a lot different from that high above the ground.