• Title/Summary/Keyword: Wiener integral

Search Result 121, Processing Time 0.025 seconds

THE PARTIAL DIFFERENTIAL EQUATION ON FUNCTION SPACE WITH RESPECT TO AN INTEGRAL EQUATION

  • Chang, Seung-Jun;Lee, Sang-Deok
    • The Pure and Applied Mathematics
    • /
    • v.4 no.1
    • /
    • pp.47-60
    • /
    • 1997
  • In the theory of the conditional Wiener integral, the integrand is a functional of the standard Wiener process. In this paper we consider a conditional function space integral for functionals of more general stochastic process and the generalized Kac-Feynman integral equation. We first show that the existence of a partial differential equation. We then show that the generalized Kac-Feynman integral equation is equivalent to the partial differential equation.

  • PDF

EVALUATION FORMULAS FOR AN ANALOGUE OF CONDITIONAL ANALYTIC FEYNMAN INTEGRALS OVER A FUNCTION SPACE

  • Cho, Dong-Hyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.655-672
    • /
    • 2011
  • Let $C^r$[0,t] be the function space of the vector-valued continuous paths x : [0,t] ${\rightarrow}$ $R^r$ and define $X_t$ : $C^r$[0,t] ${\rightarrow}$ $R^{(n+1)r}$ and $Y_t$ : $C^r$[0,t] ${\rightarrow}$ $R^{nr}$ by $X_t(x)$ = (x($t_0$), x($t_1$), ..., x($t_{n-1}$), x($t_n$)) and $Y_t$(x) = (x($t_0$), x($t_1$), ..., x($t_{n-1}$)), respectively, where 0 = $t_0$ < $t_1$ < ... < $t_n$ = t. In the present paper, with the conditioning functions $X_t$ and $Y_t$, we introduce two simple formulas for the conditional expectations over $C^r$[0,t], an analogue of the r-dimensional Wiener space. We establish evaluation formulas for the analogues of the analytic Wiener and Feynman integrals for the function $G(x)=\exp{{\int}_0^t{\theta}(s,x(s))d{\eta}(s)}{\psi}(x(t))$, where ${\theta}(s,{\cdot})$ and are the Fourier-Stieltjes transforms of the complex Borel measures on ${\mathbb{R}}^r$. Using the simple formulas, we evaluate the analogues of the conditional analytic Wiener and Feynman integrals of the functional G.

AN ANALOGUE OF WIENER MEASURE AND ITS APPLICATIONS

  • Im, Man-Kyu;Ryu, Kun-Sik
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.5
    • /
    • pp.801-819
    • /
    • 2002
  • In this note, we establish a translation theorem in an analogue of Wiener space (C[0,t],$\omega$$\phi$) and find formulas for the conditional $\omega$$\phi$-integral given by the condition X(x) = (x(to), x(t$_1$),…, x(t$_{n}$)) which is the generalization of Chang and Chang's results in 1984. Moreover, we prove a translation theorem for the conditional $\omega$$\phi$-integral.l.

ANALYTIC FOURIER-FEYNMAN TRANSFORM AND FIRST VARIATION ON ABSTRACT WIENER SPACE

  • Chang, Kun-Soo;Song, Teuk-Seob;Yoo, Il
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.485-501
    • /
    • 2001
  • In this paper we express analytic Feynman integral of the first variation of a functional F in terms of analytic Feynman integral of the product F with a linear factor and obtain an integration by parts formula of the analytic Feynman integral of functionals on abstract Wiener space. We find the Fourier-Feynman transform for the product of functionals in the Fresnel class F(B) with n linear factors.

  • PDF

RELATIONSHIPS BETWEEN INTEGRAL TRANSFORMS AND CONVOLUTIONS ON AN ANALOGUE OF WIENER SPACE

  • Cho, Dong Hyun
    • Honam Mathematical Journal
    • /
    • v.35 no.1
    • /
    • pp.51-71
    • /
    • 2013
  • In the present paper, we evaluate the analytic conditional Fourier-Feynman transforms and convolution products of unbounded function which is the product of the cylinder function and the function in a Banach algebra which is defined on an analogue o Wiener space and useful in the Feynman integration theories and quantum mechanics. We then investigate the inverse transforms of the function with their relationships and finally prove that th analytic conditional Fourier-Feynman transforms of the conditional convolution products for the functions, can be expressed in terms of the product of the conditional Fourier-Feynman transforms of each function.

A GENERALIZED SIMPLE FORMULA FOR EVALUATING RADON-NIKODYM DERIVATIVES OVER PATHS

  • Cho, Dong Hyun
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.609-631
    • /
    • 2021
  • Let C[0, T] denote a generalized analogue of Wiener space, the space of real-valued continuous functions on the interval [0, T]. Define $Z_{\vec{e},n}$ : C[0, T] → ℝn+1 by $$Z_{\vec{e},n}(x)=\(x(0),\;{\int}_0^T\;e_1(t)dx(t),{\cdots},\;{\int}_0^T\;e_n(t)dx(t)\)$$, where e1,…, en are of bounded variations on [0, T]. In this paper we derive a simple evaluation formula for Radon-Nikodym derivatives similar to the conditional expectations of functions on C[0, T] with the conditioning function $Z_{\vec{e},n}$ which has an initial weight and a kind of drift. As applications of the formula, we evaluate the Radon-Nikodym derivatives of various functions on C[0, T] which are of interested in Feynman integration theory and quantum mechanics. This work generalizes and simplifies the existing results, that is, the simple formulas with the conditioning functions related to the partitions of time interval [0, T].

PROBABILITIES OF ANALOGUE OF WIENER PATHS CROSSING CONTINUOUSLY DIFFERENTIABLE CURVES

  • Ryu, Kun Sik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.579-586
    • /
    • 2009
  • Let $\varphi$ be a complete probability measure on $\mathbb{R}$, let $m_{\varphi}$ be the analogue of Wiener measure over paths on [0, T] and let f(t) be continuously differentiable on [0, T]. In this note, we give the analogue of Wiener measure $m_{\varphi}$ of {x in C[0, T]$\mid$x(0) < f(0) and $x(s_0){\geq}f(s_{0})$ for some $s_{0}$ in [0, T]} by use of integral equation techniques. This result is a generalization of Park and Paranjape's 1974 result[1].

  • PDF

A sequential approach to conditional wiener integrals

  • Chang, Seung-Jun;Kang, Si-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.301-314
    • /
    • 1992
  • In this paper, motivated by [1] and [7] we give a sequential definition of conditional Wiener integral and then use this definition to evaluate conditional Wiener integral of several functions on C [0, T]. The sequential definition is defined as the limit of a sequence of finite dimensional Lebesgue integrals. Thus the evaluation of conditional Wiener integrals involves no integrals in function space [cf, 5].

  • PDF