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GENERALIZED CONDITIONAL YEH-WIENER

INTEGRALS FOR THE SAMPLE PATH-VALUED

CONDITIONING FUNCTION

Joong Hyun Ahn∗ and Joo Sup Chang‡

Abstract. The purpose of this paper is to treat the generalized
conditional Yeh-Wiener integral for the sample path-valued condi-
tioning function. As a special case of our results, we obtain the
results in [6].

1. Introduction

Let t = g(s) be a monotonically decreasing and continuous function
on [0, S] with g(S) > 0 and let Ω = {(s, t) | 0 ≤ s ≤ S, 0 ≤ t ≤ g(s)}.
Let C(Ω) be a space of all real continuous functions x on Ω such that
x(s, t) = 0 for all (s, t) in Ω satisfying st = 0.

In [3], the authors treated the generalized conditional Yeh-Wiener
integral which includes the conditional Yeh-Wiener integral in [5] and
the modified conditional Yeh-Wiener integral in [1]. In [5–8], Park and
Skoug treated the conditional Yeh-Wiener integral for various kinds of
conditioning functions including the sample path-valued conditioning
function.
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The purpose of this paper is to treat the generalized conditional Yeh-
Wiener integral for the sample path-valued conditioning function. We
obtain the formula for the generalized conditional Yeh-Wiener integral
and then evaluate it for two kinds of functionals. As a special case of
our results, we obtain the results in [6].

2. Generalized Conditional Yeh-Wiener integrals for sample
path-valued conditioning function

For a functional F of x in C(Ω), E(F ) =
∫
C(Ω)

F (x)dm(x) is called

a generalized Yeh-Wiener integral of F if it exists ( [3]). As a sto-
chastic process, {(x(s, t)|(s, t) ∈ Ω} has a mean E(x(s, t)) = 0 and
E(x(s, t)x(u, v)) = min{s, u}min{t, v}. Let C[0, g(S)] denote the stan-
dard Wiener space with the Wiener measure and assume that ψ is in
C[0, g(S)].

For a generalized Yeh-Wiener integrable function F of x in C(Ω),
consider the generalized conditional Yeh-Wiener integral of the form

(2.1) E(F (x)|x(S, (·) ∧ T ) = ψ((·) ∧ T ))
with g(S) = T and a ∧ b = min{a, b}. Here, (·) belongs to [0, g(s)] for
0 ≤ s ≤ S. Since two processes x(S, t ∧ T ) and {x(s, t) − (s/S)x(S, t ∧
T )|(s, t) ∈ Ω} are (stochastically) independent, we have

(2.2) E(F (x)|x(S, (·) ∧ T ) = ψ((·) ∧ T ))

= E(F (x(?, ·)− ?

S
x(S, (·) ∧ T ) +

?

S
ψ((·) ∧ T )))

for almost all ψ in C[0, T ]. Here, for the notational convenience, we
denote · = (·).

Especially, if g(s) = T for all 0 ≤ s ≤ S, then (·) ∧ T = (·), which
agrees with (2.2) in [6]. This means that our result (2.2) is a slight
generalization of the result in [6].

Let y(·) be a tied-down Brownian motion, that is,

{y(t) | 0 ≤ t ≤ T} = {w ∈ C[0, T ] | w(T ) = ξ}.
Then, as is well known( [6]), y(·) can be expressed in terms of the stan-
dard Wiener process,

y(t) = w(t)− t

T
w(T ) +

t

T
ξ.



Sample path-valued conditional Yeh-Wiener integrals 491

The following theorem is one of our main results, which is slightly
different from Theorem 1 in [6].

Theorem 2.1. If F ∈ L1(C(Ω),m), then we have

(2.3) Ew(E(F (x) | x(S, (·) ∧ T ) =
√
Sw((·) ∧ T )) = E(F (x)),

(2.4) E(F (x)|x(S, T ) =
√
S ξ)

= Ew

{
E

(
F (x)

∣∣∣∣ x(S, (·) ∧ T ) =
√
S (w(·)− (·)∧T

T
w((·) ∧ T ) + (·)∧T

T
ξ)

)}
.

Proof. (1) Using (2.2), we write

(2.5) Ew(E(F (x) | x(S, (·) ∧ T ) =
√
S w((·) ∧ T ))

=Ew

{
E

(
F (x(?, ·)− ?

S
x(S, (·) ∧ T ) +

?√
S
ψ((·) ∧ T )

)}
.

Let y(s, t) = x(s, t)−(s/S)x(S, t∧T )+(s/
√
S)ψ(t∧T ) for all (s, t) in

Ω. Then we have E(y(s, t)) = 0 and E(y(s, t)y(u, v)) = min{s, u}min{t, v}.
This means that {(y(s, t)|(s, t) ∈ Ω} is a generalized Yeh-Wiener process,
and the right hand side of (2.5) becomes

∫
C(Ω)

F (y)dm(y) = E(F (x)).

Thus, we obtain the formula (2.3).
(2) We use Theorem 2 in [5] to have

(2.6) E(F (x) | x(S, T ) =
√
S ξ )

= E

{
F

(
x(?, ·)− ?

S

(·) ∧ T
T

x(S, T ) +
?√
S

(·) ∧ T
T

ξ

)}
.

We can rewrite the right-hand side of (2.6) as the following form:

(2.7) E{F (x(?, ·)− ?

S
x(S, (·) ∧ T )

+
?

S
[x(S, (·) ∧ T )− (·) ∧ T

T
x(S, T ) +

(·) ∧ T
T

√
S ξ])}.

We use E(x(s, t)x(u, v)) = min{s, u}min{t, v} to show that two pro-
cesses x(s, ·)−(s/S)x(S, (·)∧T ) and x(S, (·)∧T )−((·)∧T )(x(S, T )/T ) are

stochastically independent. Furthermore,
√
S (w(·)−((·)∧T )(w(T )/T ))

and x(S, (·) ∧ T )− ((·) ∧ T )(x(S, T )/T ) are equivalent processes, where
w(·) is the standard Wiener process. Thus, (2.7) becomes
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(2.8) Ew{E{F (x(?, ·)− ?

S
x(S, (·) ∧ T )

+
?√
S

[ (w(·)− ((·) ∧ T )(w(T )/T )) + ((·) ∧ T )
ξ

T
])}}

=Ew

{
E

(
F (x)

∣∣∣∣ x(S, (·) ∧ T )

=
√
S (w(·)− (·) ∧ T

T
w((·) ∧ T ) +

(·) ∧ T
T

ξ)

)}
.

Therefore. we get the formula (2.4).

For the special case g(s) = T for 0 ≤ s ≤ S, we have the same result of
Theorem 1 in [6]. In a certain sense, our result is a slight generalization
of the result in [6].

In [6], Park and Skoug treated the rectangle Q, but we treat the more
general region Ω. Let Ω be the region given by

Ω = {(s, t) | 0 ≤ s ≤ S, 0 ≤ t ≤ g(s) }
where t = g(s) is a monotonically decreasing and continuous function on
[0, S] with g(S) = T > 0. In the following two theorems we evaluate the
generalized conditional Yeh-Wiener integral for the sample path-valued
conditioning function.

Theorem 2.2. Let F be a functional on C(Ω) given by F (x) =∫
Ω
x(s, t)dsdt. Then we have

(2.9) E(F (x) | x(S, (·)∧T ) = ψ((·) ∧ T ))

=
S

2

∫ T

0

ψ(t)dt+
ψ(T )

S

∫ S

0

∫ g(s)

T

sdtds.

Proof. By (2.2) and Fubini theorem, we have

(2.10) E(F (x) | x(S, (·) ∧ T ) = ψ((·) ∧ T ))

=

∫
Ω

E
(
x(s, t)− s

S
x(S, (·) ∧ T ) +

s

S
ψ((·) ∧ T )

)
dsdt.

=

∫
Ω

s

S
ψ((·) ∧ T )dsdt.
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The right hand side of the last equality in (2.10) comes from the fact
that E(x(s, t)) = 0 and m(C(Ω)) = 1. By the straightward calculation,
we have

(2.11) E(F (x) | x(S, (·)∧T ) = ψ((·) ∧ T ))

=

∫ S

0

∫ g(s)

0

s

S
ψ((·) ∧ T )dtds

=
S

2

∫ T

0

ψ(t)dt+
ψ(T )

S

∫ S

0

∫ g(s)

T

sdtds,

which is our desired result.

Theorem 2.3. Let F be a functional on C(Ω) given by F (x) =∫
Ω
x2(s, t)dsdt and g(S) = T . Then we have

(2.12) E(F (x) | x(S, (·) ∧ T ) = ψ((·) ∧ T ))

=
S2T 2

12
+
S

3

∫ T

0

ψ2(t)dt+

∫ S

0

∫ g(s)

T

(
st− s2

S
T +

s2

S2
ψ2(T )

)
dtds.

Proof. By (2.2) and Fubini theorem, we have

(2.13) E(F (x) | x(S, (·) ∧ T ) = ψ((·) ∧ T ))

=

∫
Ω

E

({
x(s, t)− s

S
x(S, (·) ∧ T ) +

s

S
ψ((·) ∧ T )

}2
)
dsdt

=

∫
Ω

{
st− s2

S
(t ∧ T ) +

s2

S2
ψ2(t ∧ T )

}
dtds.

The right hand side of the last equality in (2.13) comes from the fact that
E(x(s, t)) = 0, E(x(s, t)x(u, v)) = min{s, u}min{t, v} and m(C(Ω)) =
1. By the straightward calculation, the right hand side of the last equal-
ity in (2.13) becomes

(2.14)
S2T 2

12
+
S

3

∫ T

0

ψ2(t)dt

+

∫ S

0

∫ g(s)

T

(
st− s2

S
T +

s2

S2
ψ2(T )

)
dtds,

which is our desired result.
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Remark 2.4. In Theorem 2.2 and Theorem 2.3, we have the extra
terms which does not appear in Example 1 and Example 2 of [6]. This
means that Park and Skoug’s examples in [6] are the special case of our
results for the rectangle Ω.
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