A SEQUENTIAL APPROACH TO CONDITIONAL WIENER INTEGRALS

SEUNG JUN CHANG[†] AND SI HO KANG[‡]

1. Introduction

Let $(C[0,T],\mathcal{F},m_w)$ denote Wiener space where C[0,T] is the Banach space of real valued continuous functions x(s) on the interval [0,T] with x(0) = 0 under the sup norm. Let F be a real-valued Wiener integrable function on C[0,T]. Let X be a function on C[0,T] defined by X(x) = x(T). The conditional Wiener integral of F given X, written $E[F(x)|X(x) = \xi]$, is defined by any Borel measurable and P_X -integrable function of ξ on $(\mathbf{R}, \mathcal{B}(\mathbf{R}), P_X)$ such that for all $A \in \mathcal{B}(\mathbf{R})$,

$$\int_{X^{-1}(A)} F(x) dm_w(x) = \int_A E[F(x)|X(x) = \xi] dP_X(\xi)$$

where $\mathcal{B}(\mathbf{R})$ denotes the Borel σ -algebra of \mathbf{R} and $P_X(A) = m_w \circ X^{-1}(A)$ for $A \in \mathcal{B}(\mathbf{R})$. By the Radon-Nikodym theorem, $E[F(x)|X(x) = \xi]$ is unique up to Borel null sets in \mathbf{R} . For more details, see [7].

In [1] R.Cameron introduced the concept of a sequential Wiener integral and then used this concept to study Feynman integrals on Wiener space C[0,T]. In [7] J. Yeh introduced the concept of conditional Wiener integral $E[F(x)|X(x)=\xi]$ of a function F on C[0,T] given X and proved the inversion formula for conditional Wiener integral, and then used the formula to derive the Kac-Feynman formula and to evaluate conditional Wiener integrals of several functions on C[0,T].

In this paper, motivated by [1] and [7] we give a sequential definition of conditional Wiener integral and then use this definition to evaluate conditional Wiener integral of several functions on C[0,T]. The sequential definition is defined as the limit of a sequence of finite dimensional

Received December 9, 1991.

Research Supported by KOSEF and BSRIP, 1991.

Seung Jun Chang and Si Ho Kang

Lebesgue integrals. Thus the evaluation of conditional Wiener integrals involves no integrals in function space [cf,5].

2. A sequential definition of conditional Wiener integral

Let $\tau = \{t_1, t_2, \dots, t_n\}$ be a partition of [0, T] with $0 = t_0 < t_1 < \dots < t_n = T$. Let $\xi \in \mathbf{R}$ and $x^{\xi}(s)$ be a polygonal curve in C[0, T] base on a partition τ and the vector $\vec{u} = (u_1, u_2, \dots, u_{n-1})$ in \mathbf{R}^{n-1} defined by

(2.1)
$$x^{\xi}(s) = x(s, \tau, \vec{u}) = u_{k-1} + \frac{u_k - u_{k-1}}{t_k - t_{k-1}} (s - t_{k-1})$$

when $t_{k-1} \le s \le t_k$, $k = 1, 2, \dots, n$, $u_0 = 0$ and $u_n = \xi$. Let $K^{\xi}(\tau, \vec{u})$ be the function on \mathbb{R}^{n-1} based on τ defined by

$$K^{\xi}(\tau, \vec{u}) = \left(\prod_{k=1}^{n} 2\pi (t_k - t_{k-1})\right)^{-\frac{1}{2}} \exp\left\{-\frac{1}{2} \sum_{k=1}^{n} \frac{(u_k - u_{k-1})^2}{t_k - t_{k-1}}\right\}$$

where $u_0 = 0, u_n = \xi$. Define $Y_{\tau} : C[0,T] \to \mathbf{R}^{n-1}$ by $Y_{\tau}(x) = (x(t_1), x(t_2), \dots, x(t_{n-1}))$. Let $B \in \mathcal{B}(\mathbf{R}^{n-1})$. Then we have, by the definition of conditional Wiener integral,

(2.2)
$$\int_{X^{-1}(A)} I_{Y_{\tau}^{-1}(B)} dm_w(x) = \int_A E[I_{Y_{\tau}^{-1}(B)} | X = \xi] dP_X(\xi)$$

for all $A \in \mathcal{B}(\mathbf{R})$, where I_E denotes the indicator function of a subset E of C[0,T]. Thus the left hand side of (2.2) is equal to

$$m_w(\{x\in C[0,T]|(Y_\tau(x),X(x))\in B\times A\})=\int_A\int_BK^\xi(\tau,\vec{u})d\vec{u}d\xi.$$

Since $dP_X(\xi) = (2\pi T)^{-\frac{1}{2}} \exp\{-\frac{\xi^2}{2T}\}d\xi$, by using the Radon-Nikodym theorem in (2.2), it follows that

$$E[I_{Y_{\tau}^{-1}(B)}(x)|X(x) = \xi] = \sqrt{2\pi T} \exp\left\{\frac{\xi^2}{2T}\right\} \int_{B} K^{\xi}(\tau, \vec{u}) d\vec{u},$$

almost everywhere ξ in **R**.

For each $\xi \in \mathbf{R}$, let $C^{\xi}[0,T] = \{x \in C[0,T] | x(T) = \xi\}$. A subset V of $C^{\xi}[0,T]$ of the form

(2.3)
$$V = \{x \in C^{\xi}[0,T] | Y_{\tau}(x) \in B\} = Y_{\tau}^{-1}(B), B \in \mathcal{B}(\mathbf{R}^{n-1})$$

is called a cylinder set in $C^{\xi}[0,T]$. Let \mathcal{R}^{ξ} be the collection of all such cylinder sets in $C^{\xi}[0,T]$. Then $\mathcal{R}^{\xi}=\mathcal{R}\bigcap C^{\xi}[0,T]$ where \mathcal{R} is an algebra of cylinder sets in C[0,T], and also $\sigma(\mathcal{R}^{\xi})=\mathcal{B}^{\xi}\equiv\mathcal{B}(C^{\xi}[0,T])=\mathcal{B}(C[0,T])\bigcap C^{\xi}[0,T]$. Define a set function m^{ξ} on \mathcal{R}^{ξ} by

(2.4)
$$m^{\xi}(V) = \sqrt{2\pi T} \exp\left\{\frac{\xi^2}{2T}\right\} \int_B \left(\prod_{j=1}^n 2\pi (t_j - t_{j-1})\right)^{-\frac{1}{2}} \cdot \exp\left\{-\frac{1}{2} \sum_{j=1}^n \frac{(u_j - u_{j-1})^2}{t_j - t_{j-1}}\right\} du_1 \cdots du_{n-1},$$

where V is as in (2.3), $u_0 = 0$ and $u_n = \xi$. Then m^{ξ} is a probability measure on \mathcal{R}^{ξ} and so by the Carathéodory extension theorem m^{ξ} has an extension, still denoted by m^{ξ} , to the σ -algebra \mathcal{F}^{ξ} of Carathéodory measurable subsets of $C^{\xi}[0,T]$ with respect to the outer measure induced by m^{ξ} on \mathcal{R}^{ξ} which in particular contains $\mathcal{B}(C^{\xi}[0,T])$, the Borel σ -algebra of $C^{\xi}[0,T]$. The measure m^{ξ} in $C^{\xi}[0,T]$ is called the conditional Wiener measure with parameter ξ .

THEOREM 2.1.[2]. Let F be a real valued function on C[0,T]. Then

- (i) If F is \mathcal{F}^{ξ} -measurable, then F restricted to $C^{\xi}[0,T]$, $F|_{C^{\xi}[0,T]}$ is \mathcal{F}^{ξ} -measurable a.e. ξ in C[0,T].
- (ii) If F is $\mathcal{B}(C[0,T])$ -measurable, then $F|_{C^{\xi}[0,T]}$ is \mathcal{B}^{ξ} -measurable for every $\xi \in \mathbb{R}$.

The following theorem shows that the conditional Wiener integral is indeed the integral in $C^{\xi}[0,T]$ with respect to the measure m^{ξ} .

THEOREM 2.2.[2]. Let F be a real-valued Wiener integrable function on C[0,T] and X(x)=x(T). Then

- (i) $\int_{C[0,T]} F(x) dm(x) = \int_{\mathbf{R}} \int_{C^{\xi}[0,T]} F(x) dm^{\xi}(x) dP_X(\xi)$
- (ii) There exists a version of $E[F(x)|X(x) = \xi]$ such that

(2.5)
$$E[F(x)|X(x) = \xi] = \int_{C^{\xi}[0,T]} F(x) dm^{\xi}(x)$$

for every $\xi \in \mathbf{R}$.

DEFINITION 2.1. Let F(x) be a real-valued Wiener integrable function on C[0,T]. If the integral in the right hand side of (2.6) exists for all n and if the following limit exists and is independent of the choice of the sequence $\{\tau_n\}$ of partitions such that norm $\|\tau_n\| \to 0$, we say that the conditional Wiener integral with parameter ξ , written $E^s[F(x)|X(x) = \xi]$, exists and is given by

$$(2.6) E^{s}[F(x)|X(x) = \xi] = \lim_{n \to \infty} A_{\xi} \int_{\mathbf{R}^{n-1}} F(x((\cdot), \tau_{n}, \vec{u})) K^{\xi}(\tau_{n}, \vec{u}) d\vec{u}$$

where $A_{\xi} = \sqrt{2\pi T} \exp\left\{\frac{\xi^2}{2T}\right\}$.

THEOREM 2.3. Let F(x) be a real valued continuous function and X(x) = x(T). If there exists an $R(x) \in L^1(C[0,T])$ such that $|F(x)| \leq R(x)$ on C[0,T], then the conditional Wiener integral $E^s[F(x)|X(x) = \xi]$ exists for all parameter ξ and

$$\begin{split} E[F(x)|X(x) &= \xi] = E^s[F(x)|X(x) = \xi] \\ &= \lim_{n \to \infty} A_{\xi} \int_{\mathbb{R}^{n-1}} F(x((\cdot), \tau_n, \vec{u})) K^{\xi}(\tau_n, \vec{u}) d\vec{u}. \end{split}$$

Proof. By the continuity of F(x) on C[0,T] and of x on [0,T], we have

$$\lim_{n\to\infty} F(x((\cdot),\tau_n,Y_{\tau_n}(x))) = F(x), \quad |F(x((\cdot),\tau_n,Y_{\tau_n}(x)))| \le R(x)$$

for all $x \in C[0,T]$. By means of (2.4), we have

$$dm^{\xi} \circ Y_{\tau_n}^{-1}(\vec{u}) = A_{\xi} \cdot K^{\xi}(\tau_n, \vec{u}) d\vec{u}.$$

Hence by change of variable formula [3,p.163], we obtain

(2.8)
$$\int_{C^{\xi}[0,t]} F(x((\cdot),\tau_{n},Y_{\tau_{n}}(x))) dm^{\xi}(x) = A_{\xi} \int_{\mathbb{R}^{n-1}} F(x((\cdot),\tau_{n},\vec{u})) \cdot K^{\xi}(\tau_{n},\vec{u}) d\vec{u}.$$

Thus by using (2.7) and dominated convergence theorem in (2.8), we have

$$\lim_{n\to\infty}\int_{C^{\xi}[0,T]}F(x((\cdot),\tau_n,Y_{\tau_n}(x)))dm^{\xi}(x)=\int_{C^{\xi}[0,T]}F(x)dm^{\xi}(x).$$

Hence it follows from (2.5) that the theorem is proved.

3. Evaluation of conditional Wiener integrals

In this section we use the sequential definition of Wiener integral introduced in Section 2 to evaluate conditional Wiener integrals of several functions on C[0,T].

The following lemmas are well known integration formulas which will be used several times in this section.

LEMMA 3.1. Let b be a positive real number. Then

(3.1)
$$\frac{1}{\sqrt{2\pi b}} \int_{\mathbf{R}} v^n \exp\left\{-\frac{v^2}{2b}\right\} dv = 1, 0, b$$

for n = 0, 1, 2 respectively.

LEMMA 3.2. Let $0 \le t_1 < t_2 < t_3 \le T$. Then

$$\begin{split} \frac{1}{\sqrt{(2\pi)^2(t_2 - t_1)(t_3 - t_2)}} \int_{\mathbf{R}} \exp\left\{-\frac{1}{2} \left(\frac{(u_2 - u_1)^2}{t_2 - t_1} + \frac{(u_3 - u_2)^2}{t_3 - t_2}\right)\right\} du_2 \\ &= \frac{1}{\sqrt{2\pi(t_3 - t_1)}} \exp\left\{-\frac{(u_3 - u_1)^2}{2(t_3 - t_1)}\right\}. \end{split}$$

LEMMA 3.3. Let $0 < t_1 < t_2$. Then for any $u \in \mathbb{R}$,

(3.3)
$$\frac{1}{\sqrt{(2\pi)^2 t_1 (t_2 - t_1)}} \int_{\mathbf{R}} v \exp\left\{-\frac{v^2}{2t_1} - \frac{(u - v)^2}{2(t_2 - t_1)}\right\} dv$$
$$= \left(\frac{t_1}{t_2} u\right) \frac{1}{\sqrt{2\pi t_2}} \exp\left\{-\frac{u^2}{2t_2}\right\}.$$

Proof. Observe that

$$(3.4) \qquad \frac{v^2}{t_1} + \frac{(u-v)^2}{t_2 - t_1} = \frac{t_2}{t_1(t_2 - t_1)} \left(v - \frac{t_1}{t_2}u\right)^2 + \frac{u^2}{t_2}$$

and that

(3.5)

$$v \exp\left\{-\frac{v^2}{2t_1} - \frac{(u-v)^2}{2(t_2 - t_1)}\right\}$$

$$= \left\{\left(v - \frac{t_1}{t_2}u\right) + \frac{t_1}{t_2}u\right\} \exp\left\{-\frac{t_2}{2t_1(t_2 - t_1)}\left(v - \frac{t_1}{t_2}u\right)^2 - \frac{u^2}{2t_2}\right\}.$$

Thus, by integrating (3.5) with respect to v over R with the help of Lemma 3.1, we establish (3.3) as desired.

LEMMA 3.4. Let $0 < t_1 < t_2$. Then for any $u \in \mathbf{R}$,

(3.6)
$$\frac{1}{\sqrt{(2\pi)^2 t_1 (t_2 - t_1)}} \int_{\mathbf{R}} v^2 \exp\left\{-\frac{v^2}{2t_1} - \frac{(u - v)^2}{2(t_2 - t_1)}\right\} dv$$

$$= \left\{\frac{t_1 (t_2 - t_1)}{t_2} + \left(\frac{t_1}{t_2} u\right)^2\right\} \frac{1}{\sqrt{2\pi t_2}} \exp\left\{-\frac{u^2}{2t_2}\right\}.$$

A Sequential Approach to Conditional Wiener Integrals

Proof. By means of (3.4), we have

$$(3.7) v^2 \exp\left\{-\frac{v^2}{2t_1} - \frac{(u-v)^2}{2(t_2-t_1)}\right\}$$

$$= \left\{ \left(v - \frac{t_1}{t_2}u\right)^2 + 2\frac{t_1}{t_2}u\left(v - \frac{t_1}{t_2}u\right) + \left(\frac{t_1}{t_2}u\right)^2 \right\}$$

$$\cdot \exp\left\{-\frac{t_2}{2t_1(t_2-t_1)}\left(v - \frac{t_1}{t_2}u\right)^2 - \frac{u^2}{2t_2}\right\}.$$

Thus, by integrating (3.7) with respect to v over \mathbf{R} with the help of Lemma 3.1, we establish (3.6) as desired.

THEOREM 3.5. Let F be the function on C[0,T] defined by $F(x) = \int_0^T x(s)ds$. Then for $\xi \in \mathbf{R}$,

$$E^{s}[F(x)|x(T) = \xi] = \frac{T}{2}\xi.$$

Proof. Let $\tau_n : 0 = t_0 < t_1 < \cdots < t_n = T$ be a partition of [0,T]. Then by means of (2.1), we have

(3.8)

$$F(x((\cdot), \tau_n, \vec{u})) = \sum_{k=1}^n \int_{t_{k-1}}^{t_k} \left(u_{k-1} + \frac{u_k - u_{k-1}}{t_k - t_{k-1}} (s - t_{k-1}) \right) ds$$

$$= \sum_{k=1}^n \frac{1}{2} (u_k - u_{k-1}) (t_k + t_{k-1}) + (u_{k-1} t_k - u_k t_{k-1})$$

$$= \frac{1}{2} \sum_{k=2}^n (t_k - t_{k-2}) u_{k-1} + (T - t_{n-1}) \xi.$$

Thus by using (3.8), we obtain

$$\int_{\mathbf{R}^{n-1}} F(x((\cdot), \tau_n, \vec{u})) K^{\xi}(\tau_n, \vec{u}) d\vec{u}$$

$$= \frac{1}{2} \sum_{k=2}^{n} \int_{\mathbf{R}^{n-1}} (t_k - t_{k-2}) u_{k-1} K^{\xi}(\tau_n, \vec{u}) d\vec{u} + (T - t_{n-1}) \xi.$$

But by using Lemma 3.3 (n-k+1)-times repeatedly, we have

$$\int_{\mathbf{R}^{n-1}} (t_k - t_{k-2}) u_{k-1} K^{\xi}(\tau_n, \vec{u}) d\vec{u} = (t_k - t_{k-2}) \frac{t_{k-1} \xi}{T \sqrt{2} \pi T} \exp \left\{ -\frac{\xi^2}{2T} \right\}.$$

Hence we have

$$\begin{split} &A_{\xi} \int_{\mathbf{R}^{n-1}} F(x(s), \tau_{n}, \vec{u}) K^{\xi}(\tau_{n}, \vec{u}) d\vec{u} \\ &= \frac{1}{2} \sum_{k=2}^{n} (t_{k} - t_{k-2}) \frac{t_{k-1}}{T} \xi + (T - t_{n-1}) \xi = \frac{T}{2} \xi \end{split}$$

so that the theorem is proved.

THEOREM 3.6. Let F be the function on C[0,T] defined by $F(x) = \int_0^T (x(s))^2 ds$. Then for $\xi \in \mathbf{R}$,

$$E^{s}[F(x)|x(T) = \xi] = \frac{T^{2}}{6} + \frac{T}{3}\xi^{2}.$$

Proof. Let $\tau_n : 0 = t_0 < t_1 < \cdots < t_n = T$ be a partition of [0,T]. Then by means of (2.1), we have

$$F(x((\cdot), \tau_n, \vec{u})) = \sum_{k=1}^n \int_{t_{k-1}}^{t_k} \left(u_{k-1} + \frac{u_k - u_{k-1}}{t_k - t_{k-1}} (s - t_{k-1}) \right)^2 ds$$

$$= \sum_{k=1}^n \left[\frac{(u_k - u_{k-1})^2}{3(t_k - t_{k-1})} (t_k^2 + t_{k-1}t_k + t_{k-1}^2) + \frac{(u_k - u_{k-1})(u_{k+1}t_k - u_kt_{k-1})}{t_k - t_{k-1}} (t_k + t_{k-1}) + \frac{u_{k-1}t_k - u_kt_{k-1}}{t_k - t_{k-1}} \right]$$

$$= \sum_{k=1}^n \frac{1}{3} (t_k - t_{k-1}) (u_k^2 + u_{k-1}u_k + u_{k-1}^2).$$

Thus by using (3.9) we have

$$(3.10)$$

$$\int_{\mathbf{R}^{n-1}} F(x((\cdot), \tau_n, \vec{u})) K^{\xi}(\tau_n, \vec{u}) d\vec{u}$$

$$= \frac{1}{3} \sum_{k=1}^{n} (t_k - t_{k-1}) \int_{\mathbf{R}^{n-1}} (u_k^2 + u_{k-1} u_k + u_{k-1}^2) K^{\xi}(\tau_n, \vec{u}) d\vec{u}.$$

But by using Lemma 3.3 repeatedly, we obtain (3.11)

$$\alpha_{k} \equiv A_{\xi} \int_{\mathbf{R}^{n-1}} u_{k}^{2} K^{\xi}(\tau, \vec{u}) d\vec{u}$$

$$= \frac{t_{k}(t_{k+1} - t_{k})}{t_{k+1}} + \left(\frac{t_{k}}{t_{k+1}}\right)^{2} \cdot \frac{t_{k+1}(t_{k+2} - t_{k+1})}{t_{k+2}} + \cdots + \left(\frac{t_{n-2}}{t_{n-1}}\right)^{2} \cdot \frac{t_{n-1}(T - t_{n-1})}{T} + \left(\frac{t_{k}}{T}\right)^{2} \xi^{2}$$

and by using Lemma 3.1 once and then using Lemma 3.3 repeatedly, we obtain

(3.12)
$$A_{\xi} \int_{\mathbb{R}^{n-1}} u_{k-1} u_k K^{\xi}(\tau_n, \vec{u}) d\vec{u} = \frac{t_{k-1}}{t_k} \alpha_k$$

where α_k is as in (3.11). Substituting (3.11) and (3.12) in (3.10), and then simplifying, we obtain

$$\begin{split} A_{\xi} \int_{\mathbf{R}^{n-1}} F(x((\cdot), \tau_n, \vec{u})) K^{\xi}(\tau_n, \vec{u}) d\vec{u} \\ &= \frac{1}{3} \sum_{k=1}^n (t_k - t_{k-1}) \left(\alpha_k + \frac{t_{k-1}}{t_k} \alpha_k + \alpha_{k-1} \right) \\ &= \frac{1}{3} \left[\sum_{k=1}^n t_{k-1} (t_k - t_{k-1}) + \frac{T t_{n-1}^2}{T^2} \xi^2 + \left(T - \frac{t_{n-1}^2}{T} \right) \xi^2 \right]. \end{split}$$

Hence we obtain

$$E^{s}[F(x)|x(T) = \xi] = \frac{1}{3} \int_{0}^{T} s ds + \frac{T}{3} \xi^{2}$$

so that the theorem is proved.

THEOREM 3.7. Let F be the function on C[0,T] defined by $F(x) = \exp\{\int_0^T x(s)ds\}$. Then for $\xi \in \mathbf{R}$,

$$E^s[F(x)|x(T)=\xi]=\exp\left\{\frac{T^3}{24}+\frac{T}{2}\xi\right\}.$$

Proof. Let $\tau_n : 0 = t_0 < t_1 < \cdots < t_n = T$ be a partition of [0, T]. Then by means of (2.1), we have

$$\begin{split} &F(x((\cdot),\tau_n,\vec{u})) \\ &= \exp\left\{\sum_{k=1}^n \int_{t_{k-1}}^{t_k} \left(u_{k-1} + \frac{u_k - u_{k-1}}{t_k - t_{k-1}}(s - t_{k-1})\right) ds\right\} \\ &= \exp\left\{\sum_{k=1}^n \left[u_{k-1}(t_k - t_{k-1}) + \frac{1}{2}(u_k - u_{k-1})(t_k - t_{k-1})\right]\right\}. \end{split}$$

Observe that

$$\begin{split} G(\tau_n, \vec{u}) &\equiv \sum_{k=1}^n \left\{ u_{k-1}(t_k - t_{k-1}) + \frac{1}{2}(u_k - u_{k-1})(t_k - t_{k-1}) - \frac{(u_k - u_{k-1})^2}{2(t_k - t_{k-1})} \right\} \\ &= -\frac{1}{2} \sum_{k=1}^n \left\{ \frac{(u_k - u_{k-1})^2}{t_k - t_{k-1}} - (t_k - t_{k-1})u_{k-1} - (t_k - t_{k-1})u_k \right\}. \end{split}$$

By using (3.4) (n-1) times repeatedly, we obtain

$$\begin{split} &G(\tau_n,\vec{u}) \\ &= -\frac{1}{2} \sum_{k=2}^{n-1} \left\{ \frac{t_k}{t_{k-1}(t_k - t_{k-1})} \left(u_{k-1} - \frac{t_{k-1}}{t_k} u_k \right)^2 - (t_k - t_{k-2}) u_{k-1} \right\} \\ &- \frac{1}{2} \left[\frac{T}{t_{n-1}(T - t_{n-1})} \left(u_{n-1} - \frac{t_{n-1}}{T} \xi \right)^2 + \frac{\xi^2}{T} - (T - t_{n-1}) \xi \right] \\ &= -\frac{1}{2} \sum_{k=2}^{n-1} \left[\frac{t_k}{t_{k-1}(t_k - t_{k-1})} - \left(u_{k-1} - \left(\frac{t_{k-1}}{t_k} u_k + \frac{(t_k - t_{k-1})(t_k t_{k-1} - t_1 t_0)}{2t_k} \right) \right)^2 - \frac{(t_k - t_{k-1})(t_k t_{k-1} - t_1 t_0)^2}{4t_k t_{k-1}} \right] \end{split}$$

A Sequential Approach to Conditional Wiener Integrals

$$\begin{split} &-\frac{1}{2}\left[\frac{T}{t_{n-1}(T-t_{n-1})}\left(u_{n-1}-\left(\frac{t_{n-1}}{T}\xi+\frac{(T-t_{n-1})(t_{n-1}t_{n-2}-t_{1}t_{0})}{2T}\right)\right)^{2} \\ &-\frac{\xi}{T}(t_{n-1}t_{n-2}-t_{1}t_{0})-\frac{(T-t_{n-1})(t_{n-1}t_{n-2}-t_{1}t_{0})}{4Tt_{n-1}}+\frac{\xi^{2}}{T}-(T-t_{n-1})\xi\right]. \end{split}$$

Hence we have

$$\int_{\mathbf{R}^{n-1}} F(x((\cdot), \tau_n, \vec{u})) K^{\xi}(\tau, \vec{u}) d\vec{u}$$

$$= \int_{\mathbf{R}^{n-1}} \left\{ \prod_{k=1}^{n} 2\pi (t_k - t_{k-1}) \right\}^{-\frac{1}{2}} \exp \left\{ G(\tau_n, \vec{u}) \right\} d\vec{u}$$

$$= \left(\prod_{k=1}^{n} 2\pi (t_k - t_{k-1}) \right)^{-\frac{1}{2}} \exp \left\{ \sum_{k=2}^{n-1} \frac{(t_k - t_{k-1})t_k t_{k-1}}{8} \right\} \exp \left\{ \frac{\xi}{2T} t_{n-1} t_{n-2} + \frac{(T - t_{n-1})t_{n-2}}{8T} - \frac{\xi^2}{2T} - \frac{(T - t_{n-1})\xi}{2} \right\}$$

$$\times \int_{\mathbf{R}^{n-2}} \exp \left\{ -\frac{1}{2} \sum_{k=2}^{n-1} \frac{t_k}{t_{k-1} (t_k - t_{k-1})} \left(u_{k-1} - \left(\frac{t_{k-1}}{t_k} u_k + \frac{(t_k - t_{k-1})t_{k-1}}{2} \right) \right)^2 \right\} du_1 \cdots du_{n-2}$$

$$\times \int_{\mathbf{R}} \exp \left\{ -\frac{T}{2t_{n-1} (T - t_{n-1})} \left(u_{n-1} - \left(\frac{t_{n-1}}{T} \xi + \frac{(T - t_{n-1})t_{n-1} t_{n-2}}{2T} \right) \right)^2 \right\} du_{n-1}.$$

But the last two integrals of the right hand side of (3.13) equals

$$\left(\prod_{k=2}^{n-1} 2\pi \frac{t_{k-1}(t_k-t_{k-1})}{t_k}\right)^{\frac{1}{2}} \left(2\pi \frac{t_{n-1}(T-t_{n-1})}{T}\right)^{\frac{1}{2}} \equiv \alpha_{n-1}.$$

So we have

$$\left(\prod_{k=1}^{n} 2\pi (t_k - t_{k-1})\right)^{-\frac{1}{2}} \cdot \alpha_{n-1} = \frac{1}{\sqrt{2\pi T}}.$$

Thus (3.13) is equal to

$$\frac{1}{\sqrt{2\pi T}} \exp\left\{-\frac{\xi^2}{2T}\right\} \exp\left\{\frac{1}{8} \sum_{k=2}^{n-1} (t_k - t_{k-1}) t_k t_{k-1}\right\} \cdot \exp\left\{\frac{\xi}{2T} t_{n-1} t_{n-2} + \frac{(T - t_{n-1}) t_{n-2}}{8T} - \frac{(T - t_{n-1}) \xi}{2}\right\}.$$

Hence we have

$$E^s[F(x)|x(T)=\xi]=\exp\left\{\frac{1}{8}\int_0^T s^2ds+\frac{\xi}{2}T\right\}.$$

so that the theorem is proved.

REMARK 3.8. Let $R(x) = \exp\{\beta ||x||\}, x \in C[0,T], \beta > 0$. Then by Fernique Theorem [4, p.159], $R(x) \in L^1(C[0,T])$. Hence the function F in Theorems 3.5, 3.6 and 3.7 satisfy the condition in Theorem 2.4 with this R(x). So we have $E[F(x)|X(x) = \xi] = E^s[F(x)|X(x) = \xi]$ [cf.5].

The following corollary gives formulas for the conditional Wiener integral when the conditioning function is multivalued.

COROLLARY 3.9. Let $0 = s_0 < s_1 < \dots < s_n = T$. Then we have (3.14)

$$E^{s} \left[\int_{0}^{T} x(s)ds \middle| x(s_{1}) = \xi_{1}, \dots, x(s_{n}) = \xi_{n} \right]$$
$$= \sum_{k=1}^{n} \frac{(s_{k} - s_{k-1})(\xi_{k} + \xi_{k-1})}{2}$$

(3.15)
$$E^{s} \left[\int_{0}^{T} (x(s))^{2} ds \middle| x(s_{1}) = \xi_{1}, \dots, x(s_{n}) = \xi_{n} \right]$$

$$= \frac{1}{6} \sum_{k=1}^{n} (s_{k} - s_{k-1}) [(s_{k} - s_{k-1}) + 2(\xi_{k}^{2} + \xi_{k} \xi_{k-1} + \xi_{k-1}^{2})]$$

A Sequential Approach to Conditional Wiener Integrals

(3.16)
$$E^{s} \left[\exp \left\{ \int_{0}^{T} x(s)ds \right\} \middle| x(s_{1}) = \xi_{1}, \dots, x(s_{n}) = \xi_{n} \right]$$

$$= \prod_{k=1}^{n} \left[\exp \left\{ \frac{(s_{k} - s_{k-1})^{3}}{24} + \frac{(\xi_{k} - \xi_{k-1})(s_{k} - s_{k-1})}{2} + \xi_{k-1}(s_{k} - s_{k-1}) \right\} \right]$$

where $\xi_0 = 0$.

Proof. Let F(x) denote the function in Theorems 3.5, 3.6 and 3.7. Then since the Wiener process $\{x(s): 0 \leq s \leq T\}$ is independent increments [6], it can be shown that

$$E^{s}[F(x(\cdot))|x(s_{k}) = \xi_{k}] = E^{s}[F(x(\cdot) + \xi_{k-1})|x(s_{k} - s_{k-1}) = \xi_{k} - \xi_{k-1}].$$

Thus the left hand side of (3.14), (3.15) and (3.16) equals, respectively

$$(3.14') \sum_{k=1}^{n} E^{s} \left[\int_{0}^{s_{k}-s_{k-1}} (x(s)+\xi_{k-1})ds \middle| x(s_{k}-s_{k-1}) = \xi_{k}-\xi_{k-1} \right]$$

$$(3.15') \sum_{k=1}^{n} E^{s} \left[\int_{0}^{s_{k}-s_{k-1}} (x(s)+\xi_{k-1})^{2}ds \middle| x(s_{k}-s_{k-1}) = \xi_{k}-\xi_{k-1} \right]$$

$$(3.16') \prod_{k=1}^{n} E^{s} \left[\exp \left\{ \int_{0}^{s_{k}-s_{k-1}} (x(s)+\xi_{k-1})ds \right\} \middle| x(s_{k}-s_{k-1}) = \xi_{k}-\xi_{k-1} \right]$$

Hence by using the results in Theorems 3.5, 3.6, 3.7 and Remark 3.8, we obtain the results as desired.

References

R. H. Cameron, A family of integrals serving to connect the Wiener and Feynman integrals, J. Math. and Phys. 39(1960), 126-141.

Seung Jun Chang and Si Ho Kang

- Soon J. Kang, Conditional generalized Wiener measures, Bull. Korean Math. Soc., 28(1991), 147-161.
- 3. P. Halmos, Measure Theory, NewYork: Van Nostrand, 1950.
- H-H Kuo, Gaussian measures in Banach spaces, Lecture Notes in Mathematics, No. 463, Springer-Verlag, Berlin and New York, 1975.
- 5. C. Park and D. Skoug, A simple formula for conditional Wiener integrals with applications, Pacific J. of Math., 135, 1988, No.2, 381-394.
- J. Yeh, Stochastic Process and the Wiener Integral, Marcel Dekker, New York, 1973.
- J. Yeh, Inversion of conditional Wiener integral, Pacific J. of Math., 59(1975), 623-638.

†Department of Mathematics, Sogang University, Seoul, 121-742, Korea,

[‡]DEPARTMENT OF MATHEMATICS, SOOK MYUNG WOMAN'S UNIVERSITY, SEOUL, 140-742, KOREA