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A SEQUENTIAL APPROACH TO
CONDITIONAL WIENER INTEGRALS

SEUNG JUN CHANG' AND S1 HO KaNnG?

1. Introduction

Let (C[0,T),F,m, ) denote Wiener space where C[0,T] is the Ba-
nach space of real valued continuous functions z(s) on the interval [0, T
with 2(0) = 0 under the sup norm. Let F be a real-valued Wiener in-
tegrable function on C[0,7]. Let X be a function on C[0,T] defined
by X(z) = z(T). The conditional Wiener integral of F' given X, writ-
ten E[F(z)|X(x) = €], is defined by any Borel measurable and Px-
integrable function of £ on (R, B(R), Px) such that for all 4 € B(R),

/ Fla)dmu(z) = / E[F(2)|X(x) = €]dPx(€)
X-1(4) A

where B(R) denotes the Borel o-algebra of R and Px(4) = my o
X~1(A) for A € B(R). By the Radon-Nikodym theorem, E[F(z)|X (z)
= ] is unique up to Borel null sets in R. For more details, see [7].

In 1] R.Cameron introduced the concept of a sequential Wiener inte-
gral and then used this concept to study Feynman integrals on Wiener
space C[0,T]. In [7] J. Yeh introduced the concept of conditional
Wiener integral E[F(z)|X(z) = £] of a function F on C[0,T] given
X and proved the inversion formula for conditional Wiener integral,
and then used the formula to derive the Kac-Feynuman formula and to
evaluate conditional Wiener integrals of several functions on C[0,T].

In this paper, motivated by [1] and [7] we give a sequential definition
of conditional Wiener integral and then use this definition to evaluate
conditional Wiener integral of several functions on C[0, T|. The sequen-
tial definition is defined as the limit of a sequence of finite dimensional

Received December 9, 1991.
Research Supported by KOSEF and BSRIP, 1991.



Seung Jun Chang and Si Ho Kang

Lebesgue integrals. Thus the evaluation of conditional Wiener integrals
involves no integrals in function space [cf,5].

2. A sequential definition of conditional Wiener integral

Let 7 = {t1,12,- - -,t,} be a partition of [0,7] with 0 = ¢; < ¢; <
 <tp=T. Let { € R and z¢(s) be a polygonal curve in C[0,T] base

on a partition 7 and the vector @ = (uy,uy, - - yUn—1) in R""! defined
by
- U — U1
(2.1) x‘f(s) =z(s,7,U) = ug_1 + —— (s — tk-1)
tk —tk-1

when tx_; <s<#, k=1,2,-- - n, up=0and U, = €£.
Let K¢(7, ) be the function on R"~! based on 7 defined by

e, - B 1~ (uk = up—y)?
K°(r,0) = H27r(tk—tk_1) exp —ELT——T;T

k=1 k=1

where ug = 0,u, = €. Define Y; : C[0,7] — R™! by Yi(z) =
(z(t1),2(t2), - -, 2(tn—1)). Let B € B(R"'). Then we have, by the
definition of conditional Wiener integral,

(2.2) ./‘(—1(4) I)/T——I(B)d'l'nw(x):/AE[IYT—I(B’.lX:f]dp/\r(‘f)

for all A € B(R), where Iz denotes the indicator function of a subset
E of C[0,T)]. Thus the left hand side of (2.2) is equal to

mo({z € C[0, T)|(Y:(2), X(z)) € B x A}) = /A /B K&(r, @) dilde.

Since dPx(¢) = (27T)"% exp{—%}df, by using the Radon-Nikodym
theorem in (2.2), it follows that

2
Elly-vpy(2)|X(x) =€) = \/QWTeXp{%}/BKE(T,ﬁ)dﬂ‘,
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almost everywhere £ in R.
For each £ € R, let C4[0,T] = {z € C[0,T)|z(T) = £}. A subset V
of C¢[0,T] of the form

(2.3) V={zeC0,T)| Y:(z)eB}=Y}B), BeBR"?

is called a cylinder set in C¢[0,7]. Let R¢ be the collection of all
such cylinder sets in C¢[0,T]. Then R¢ = R(\C*¢[0,7T)] where R is an
algebra of cylinder sets in C[0, T], and also o(R?¢) = B¢ = B(C¢[0,T)) =
B(C[0,T])(N C%[0, T). Define a set function mé on R¢ by

o} (o)

1 -
S L

i=1

(2.4)

-1
2

mé&(V) = \/‘)WTexp{

tO

where V is as in (2.3), uop = 0 and u,, = . Then m¢ is a probability
measure on R¢ and so by the Carathéodory extension theorem m® has
an extension, still denoted by m?¢, to the o-algebra F¢ of Carathéodory
measurable subsets of C¢[0, 7] with respect to the outer measure in-
duced by m? on R¢ which in particular contains B(C¢[0, T]), the Borel
o-algebra of C4[0,T]. The measure m¢ in C%]0, 7] is called the condi-
tional Wiener measure with parameter £.

THEOREM 2.1.[2]. Let F be a real valued function on C[0,T]. Then

(i) If F is F®-measurable, then F restricted to C¢[0,T), Fleego,m
is F¢-measurable a.e. £ in C[0,T).

(i) If F is B(C[0,T])-measurable, then F|ce¢[o 1) is B¢-measurable
for every £ € R.

The following theorem shows that the conditional Wiener integral is
indeed the integral in C¢[0, 7] with respect to the measure m¢.
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THEOREM 2.2.[2]. Let F be a real-valued Wiener integrable func-
tion on C[0,T] and X(z) = 2(T). Then
(i) fC[o,Tj F(z)dm(z) = [g fcc[o,T] F(z)dm®(z)dPx(£)
(ii) There exists a version of E[F(z)|X () = £] such that

(2.5) BIF()|X(x) = €)= [ oy F@ImEE)

for every £ € R.

DEFINITION 2.1. Let F(z) be a real-valued Wiener integrable func-
tion on C[0,T]. If the integral in the right hand side of (2.6) exists
for all n and if the following limit exists and is independent of the
choice of the sequence {4} of partitions such that norm ||r,| — 0,
we say that the conditional Wiener integral with parameter €, written
E°[F(2)|X(z) = €], exists and is given by

(2.6) E*[F(2)|X(2) = §] = lim 4 /R P 7, @)K, @)

where A¢ = \/‘.ﬁexp {%}

THEOREM 2.3. Let F(z) be a real valued continuous function and
X(z) = a(T). If there exists an R(z) € L'(C[0,T)) such that |F(z)| <
R(z) on C[0,T), then the conditional Wiener integral E*[F(z)|X (z) =
€] exists for all parameter € and

E[F(z)|X(z) = ¢] = E*[F(2)|X(z) = ¢]

= lim A / F(z((-), Tn\ @)K (70, @)di.
Rn—l

[ amde ol

Proof. By the continuity of F(z) on C[0,T] and of z on [0,T], we
have
(2.7)

Jm F(2((-), 7n, Y, (2))) = F(2),  |F(2((-), Ta. Yr, ()] < R(2)
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for all z € C[0,T]. By means of (2.4), we have
dm® o Y, 1 () = Ag - K*(ra, ¥)di.
Hence by change of variable formula [3,p.163], we obtain

2.8) / F(2((-), Ta Yo (2)))dmf(2)
cé[o,1]

=A€/ F(z((-),Tn, @) - K&(7p, @)dH.
R"-1

Thus by using (2.7) and dominated convergence theorem in (2.8), we
have

lim F(2((-),7n, Yr, (2)))dmé(z) = / F(z)dm®(z).
o Jceo, ) Cc¢[o,T]

Hence it follows from (2.5) that the theorem is proved.

3. Evaluation of conditional Wiener integrals

In this section we use the sequential definition of Wiener integral in-
troduced in Section 2 to evaluate conditional Wiener integrals of several
functions on C[0,T)].

The following lemmas are well known integration formulas which will
be used several times in this section.

LEMMA 3.1. Let b be a positive real number. Then

2
\/‘?T exp{ ‘)b}dv-—lﬂb

for n = 0,1, 2 respectively.
LEMMA 3.2, Let 0 <t; <ty <t3 <T. Then
(3.2)

1 1w —wm)? (w—w)?)}u
\/(2”)2(t2—t1)(t3—tz)/ftekp{ 2( P

_ 1 (ug—u1)2
B V2m(tz —t1) eXp{—- 2(ts — 1) }

(3.1)
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LEMMA 3.3. Let 0 <t; < t;. Then for any u € R,

(3.3)

1 / o { v? (u - v)? }d
expy —— — ——— L dv
\/(27r)2t1(t2 —t1) Jr P 2ty 2(t2 — 1)
tl 1 'U,Z
=—u| —= —— 3.
ty ) ont, P\ a2,
Proof. Observe that

v (u-— v)? to ( 4 ):' u?
3.4 — + = UV — —-—u + —
(34) (3 ta — 1, ti(ty —t1)

and that

(3.5)

v? (u—v)?
vexp —-27 — ;—————
1 2t —ty)

bo) g b ty tr \? u?
= vV — —Uu — U > —_——— U — —1U — — .
) t2 [Py ot — 1) t 2,

Thus, by integrating (3.5) with respect to v over R with the help of
Lemma 3.1, we establish (3.3) as desired.

LEMMA 3.4. Let 0 < t; < t3. Then for any v € R,

(3.6)

1 9 v? (u—v)? } ’
Vet - &) /R” P {_571 ECEIe

_ tl(tQ——tl) tl 2 1 U2
_{ T \BY) (AL Twm [
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Proof. By means of (3.4), we have

] v_z_ _(u —v)?
(3.7) v?exp {_Qtl -—-————2(t2 — tl)}

2 2
t t t t
= {(v~t—lu> +2t—1-u (v~t—1u) + (t—lu) }
2 2 2 2
t2 tl 2 u2
cexpl ~————— (v ——u) —=— .
P T2t - 1) ts ot,

Thus, by integrating (3.7) with respect to v over R with the help of
Lemma 3.1, we establish (3.6) as desired.

THEOREM 3.5. Let F be the function on C[0,T] defined by F(z) =
foT z(s)ds. Then for £ € R,

T
£.

E'[F(a)lo(T) = €] = 5

Proof. Let 7,, : 0 =ty < t; < --- <t, =T be a partition of [0,T].
Then by means of (2.1), we have

(3.8)
n e _
F(:r((-),rn,l{[))=Z/ (uk_l+u:l(s_tk_l)> ds
k=1"tk-1

ty — th-a

1
= Z 5wk = uk1 )tk + teor) + (k- te - Uptp—1)
k=1"

1 n
=5 Z(tk —tr_g)up—1 + (T ~ tn1)E.
T k=2
Thus by using (3.8), we obtain
[ PO mm K (.
Rn—l

1 n ) L
=3 E / (tk —tk_z)uk_lf\;f('rn,u)du +(T—tn_1)f.
s b2 Rn—l
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But by using Lemma 3.3 (n — k + 1)-times repeatedly, we have

tk-1€ ¢
An 1(tk—tk g)uk II\ (Tn,u)du_ tk~tk 2) 27rT Xp{ 2T}.

Hence we have

n

Ag/ F(x(s),'rn,u)fx (T, ¥)dd
1
2

L,

le—1
(te —th2) =6+ (T — 1) =
2 S 1 5

so that the theorem is proved.

THEOREM 3.6. Let F be the function on C|[0,T) defined by F(zx) =
fo (s))2ds. Then for € € R,

Proof. Let 7, : 0 =ty < t; <--- < t, = T be a partition of [0,T].
Then by means of (2.1), we have

(3.9)
ty U — Wb 2
F(a((), 7ay @) = Z / (s o+ 2 tH)) ds

(up — up_ 1) 2 2
_— tr_q1t 1.

[3(tk—tk 1)(k+ k—1tk +t5_1)
+(uk — Ug—1 (Ukt1tr — Urti—1)

bty — tr—1

I
f M: f

(tk +th-1)

Ug—1tr — uptr_
+ 1 1:|

te —tr_1

c,oh—'

(te — tho1)(ul +upqup +ui_)).

X
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Thus by using (3.9) we have
(3.10)

[ F G, m @)K, )T
Rn—l

1 . e
= 3 Z(tk — tk-1) Ln—l(ui 4 up_qug + ui_l)I\E(‘rn,u)du.
k=1

But by using Lemma 3.3 repeatedly, we obtain
(3.11)

ak = A¢ / ui K¢(7, @)di
Rn—l

2
_ te(tegr —tr) 4+ ( 23 ) Ctega(tey2 — thtn) n
trt1 tit+1 trt2

2 2
tn—2 tn—l(T - tn——l) 2‘_ 2
+ (tn_l) ' T 7)) ¢

and by using Lemma 3.1 once and then using Lemma 3.3 repeatedly,
we obtain

th—
(3.12) AE/ uk_luklx’f(r,,,a‘)dﬁ = -—k——l—ak
Rn-1 tk

where ayj is as in (3.11). Substituting (3.11) and (3.12) in (3.10), and
then simplifying, we obtain

Ag /Rn_lF(:c((-),rn,ﬁ))I\'f(rmﬁ)dﬁ

1 & tho
== (tk*tk—1)<01k+“‘“‘k ]ak+ak-—l>
3 tg
k=1
1|« Tt:_, 2 / tZ_, 2
= = th_q1(ty — g I T- =L .
3{;““ k1) + T25+(\ =) ¢
Hence we obtain
8 1 T T 2
E'[F(a)|la(T)=¢€] =7 | sds+ =€
3 Jo 3

so that the theorem is proved.
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THEOREM 3.7. Let F be the function on C[0,T| defined by F(z) =
eXP{fo (s)ds}. Then for £ € R,

BRI =g = e { T+ e}

Proof. Let 7, : 0 =ty < t; < --- < t, = T be a partition of [0, T).
Then by means of (2.1), we have

Fz((-), 7, @)

— Ug_1
~exp{z/tk I(UL 1—{— k"tk ) (s—tk_l))ds}

= exp {Z [uk—l(tk —tk-1)+ %(Uk — Ug—1)(tk — tk—])] } .

k=1
Observe that

(ugp —ug_q1)? }

G(rn, 0) = Z {"k—l(tk —tp_1) + %(Uk —up_ ) (tg —tgo1) — 2ty = f}c—l)

—up )2
= —% Z {(u—k—-k:—ll- = (e = tgy)up_y — (t) tk-—l)“k}-

I —

By using (3.4) (n — 1) times repeatedly, we obtain

G(rp, @)

_ 1 ty_1 2

=35 (e (- ) - .
1 tn—l 62
*5[*?;;—1) ("n—l-—T——f) 2 = (T =t ueJ
5

A [t (o (S
2 Wty =t y) ty

(e = th1)(trte—y = ilto)))2 _ (e =t 1)t — titg)?
2ty 4t ptr 1
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T tao1. (T —ta_1)(tn-1ta—2 — tato) \\°
[tn—-l(T_tn-l) (u"—l - ( T E+ 2T ))

(T - tn—l)(tn—ltn—Z - tltﬂ)
4Tt, ,

Nile N

52
(tn_1tn_z — t1to) — +"T——(T—tn—1)f] .

Hence we have

/R"_1 F(2((\), T, ®)) K¢(r, @)dd
(3.13)

_1
= _/ ) {H 2w (ty — tk_1)} exp{G(mn, @) }di
R»= k=1

1
n -3 n—1
(tr —tp1)tete—1 £
= II2 ty — ts_ E —tn 1l
(k_l w(ty k 1)) exp{ 3 exp oT' ™ 1tn-2

k=2
+(T“tn—1)tn—2 _i_ ‘T"tn——l)ﬁ}
8T 2T 2

1%d th t

. -
x exp e —= —— (uk-—l - ( up
/Rn—2 { 2 2 te_1(te —tr_1) '

k=2
t — 1 t 2
(tx k21)k1>)}!1“.!n2

T tn——l
X i ——— TN
/nexp{ 2p (T — tn_y) (” ! ( Tt

(T—tn~1)tn—ltn—2)>2
dugp_1.
+ oT Un—1

But the last two integrals of the right hand side of (3.13) equals

1
n-—1 2 1
teos(te — tr o (T =1 1)\ ?
sz k—1{tk — tr=1) o T 1) = a1,
palid i T

So we have
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Thus (3.13) is equal to

2 n-1
\/2171'_T exp {_—;:T} exp {% g(tk - tk—l)tktk—l}
(T — tn—l)tn—Z _ (T T tﬂ—l)ﬁ} ]

£
exP{th" ttn-2 + 8T 2

Hence we have
T
E°[F(z)|z(T) = €] = exp {-;—/0 sids + —g—T} .

so that the theorem is proved.

REMARK 3.8. Let R(z) = exp{f||z||},z € C[0,T],8 > 0. Then by
Fernique Theorem [4, p.159], R(z) € L'(C[0,T]). Hence the function
F in Theorems 3.5, 3.6 and 3.7 satisfy the condition in Theorem 2.4
with this R(z). So we have E[F(z)|X(z) = €] = E*[F(z)|X(z) = ¢]
[cf.5].

The following corollary gives formulas for the conditional Wiener
integral when the conditioning function is multivalued.

COROLLARY 3.9. Let 0 = sg < 83 < -+ < sp = T. Then we have

(3.14)
T
E* Uv a(s)ds|z(s1) = €, - 2(sn) = &]
_y o st )Ee + 6o |
(3.15)

[/ (eo))2ds

= ‘é‘ Z(Sk = sk—1)[(sk = sk-1) + 2068 + Exbrar + €5 _y))
k=1

T S]) 61,"',17(871):611}
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(3.16)

E’ [exp {/oTx(s)ds}

=H[ {Sk—sk D° L (k= &1)(sk — 1)

2(s1) =&, 2(sa) = C’n]

24 2
+ Ek—1(sk — Sk—l)H

where &y = 0.

Proof. Let F(x) denote the function in Theorems 3.5, 3.6 and 3.7.
Then since the Wiener process {z(s) : 0 < s < T} is independent
increments [6], it can be shown that

E°[F(2(-))|2(sk) = &) = E*[F(a(-) 4 €k_1)|a(sk — sk_1) = €k — €r-1).
Thus the left hand side of (3.14), (3.15) and (3.16) equals, respectively
(3.14"
ELT ) + 6 )ds
(3.15")
> E° / T (2(s) + Ex—1)*ds
k=1 L/0

(3.16')

n . ( { Sk—Sk_3 }
E° lexp (z(s) + €x_1)ds

Hence by using the results in Theorems 3.5, 3.6, 3.7 and Remark 3.8,
we obtain the results as desired.

z‘(sk —_ sk_l) = vfk - fk—lJ

(s — Sx—1) = &k — fk—l]

z(8k — Sk—1) = €k — 51:-1]
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