• Title/Summary/Keyword: Wide-Operating Range

Search Result 526, Processing Time 0.031 seconds

A High-Efficiency, Auto Mode-Hop, Variable-Voltage, Ripple Control Buck Converter

  • Rokhsat-Yazdi, Ehsan;Afzali-Kusha, Ali;Pedram, Massoud
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.115-124
    • /
    • 2010
  • In this paper, a simple yet efficient auto mode-hop ripple control structure for buck converters with light load operation enhancement is proposed. The converter, which operates under a wide range of input and output voltages, makes use of a state-dependent hysteretic comparator. Depending on the output current, the converter automatically changes the operating mode. This improves the efficiency and reduces the output voltage ripple for a wide range of output currents for given input and output voltages. The sensitivity of the output voltage to the circuit elements is less than 14%, which is seven times lower than that for conventional converters. To assess the efficiency of the proposed converter, it is designed and implemented with commercially available components. The converter provides an output voltage in the range of 0.9V to 31V for load currents of up to 3A when the input voltage is in the range of 5V to 32V. Analytical design expressions which model the operation of the converter are also presented. This circuit can be implemented easily in a single chip with an external inductor and capacitor for both fixed and variable output voltage applications.

A Compact Rotman Lens with Wide Angle Steering Characteristics (광각 빔조향 특성을 갖는 소형 로트만 렌즈)

  • 이광일;김인선;오승엽
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.5
    • /
    • pp.500-506
    • /
    • 2002
  • This paper presents a design of wide angle steering microstrip Rotman lens operating over broadband frequency range for Electronic Warfare equipments. It has a compact and simple structure which it is easy to manufacture repetitively. The lens is modelled as a 2-dimension planar circuit, the contour integral method is performed over entire lens contour and the transmission coefficients from 8 beam ports to 8 array ports are found. The measured results are well agreed with those of analysis. Prediction of the multibeam array pattern fed by linear array antenna shows $\pm$65$^{\circ}$ of beam steering and $\pm$5 dB insertion loss deviation over 3:1 frequency range.

Development of high performance near-ultraviolet OLEDs based on the Double Wide Band Gap Emissive Layers

  • Kim, Young-Min;Park, Young-Wook;Choi, Jin-Hwan;Kim, Jai-kyeong;Ju, Byeong-Kwon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.977-979
    • /
    • 2006
  • Organic light-emitting diodes (OLEDs) based on the double wide band gap emissive layers in the range of 380 nm to 440 nm are reported. An efficient electroluminescence with a maximum at 400nm was observed at room temperature under a forward bias about 10V. With the wide band gap organic materials for near-ultraviolet emission, the low operating voltage (5V) and high current efficiency (3 cd/A) have been obtained at $2mA/cm^2$

  • PDF

Analysis and Design of Wideband Rotman Lens with Exponential Taper Using Contour Integral and Segmentation Method (경계적분법과 세그멘테이션 기법을 이용한 광대역 지수함수 테이퍼 로트만렌즈의 해석 및 설계)

  • 이광일;이일규;오승엽
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.629-632
    • /
    • 2003
  • This paper has been studied analysis and design of microstrip Rotman lens operating over wide band and wide steering angle by the contour integral method along with the segmentation method. All mutual coupling, internal reflections between ports with exponential taper are taken into account. Equally spaced ports are designed and realized which gives less amplitude ripple at array ports. The measured results of 12 input and 12 output lens show $\pm$1.8 dB insertion loss deviation over 6~18GHz wide frequency range and beam steering accuracy less than 1$^{\circ}$ over $\pm$53$^{\circ}$ angle and agrees well with the analysis results.

  • PDF

A Study on Power Plant Modeling for Control System Design

  • Kim, Tae-Shin;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1449-1454
    • /
    • 2003
  • For many industrial processes there are good static models used for process design and steady state operation. By using system identification techniques, it is possible to obtain black-box models with reasonable complexity that describe the system well in specific operating conditions [1]. But black-box models using inductive modeling(IM) is not suitable for model based control because they are only valid for specific operating conditions. Thus we need to use deductive modeling(DM) for a wide operating range. Furthermore, deductive modeling is several merits: First, the model is possible to be modularized. Second, we can increase and decrease the model complexity. Finally, we are able to use model for plant design. Power plant must be able to operate well at dramatic load change and consider safety and efficiency. This paper proposes a simplified nonlinear model of an industrial boiler, one of component parts of a power plant, by DM method and applies optimal control to the model.

  • PDF

Characteristics of Performance Parameters of Dual Mode(Ramjet-Scramjet Combined) Engine Based on the Analysis of The Operating limitations (작동한계 관점에서의 이중모드(램제트-스크램제트 연합 작동)엔진의 성능 인자 특성)

  • Sung, Hong-Gye;Byun, Jong-Ryul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.393-396
    • /
    • 2006
  • This paper presents the characteristics of the performance parameters of dual mode(ramjet-scramjet combined) engine, inlet and combustor for wide range of flight Mach number, resulted from the analysis of its operating limitations. The transitional-critical flight Mach number from ramjet to scramjet and the performance of two types of combustors, such as constant pressure- and constant area- combustor, are conceptually evaluated.

  • PDF

Flow simulation and efficiency hill chart prediction for a Propeller turbine

  • Vu, Thi;Koller, Marcel;Gauthier, Maxime;Deschenes, Claire
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.2
    • /
    • pp.243-254
    • /
    • 2011
  • In the present paper, we focus on the flow computation of a low head Propeller turbine at a wide range of design and off-design operating conditions. First, we will present the results on the efficiency hill chart prediction of the Propeller turbine and discuss the consequences of using non-homologous blade geometries for the CFD simulation. The flow characteristics of the entire turbine will be also investigated and compared with experimental data at different measurement planes. Two operating conditions are selected, the first one at the best efficiency point and the second one at part load condition. At the same time, for the same selected operating points, the numerical results for the entire turbine simulation will be compared with flow simulation with our standard stage calculation approach which includes only guide vane, runner and draft tube geometries.

Study on the prediction of performance and emission of a 4-cylinder 4-stroke cycle spark ignition engine (4기통 4사이클 스파크 점화기관의 성능 및 배기조성 예측에 관한 연구)

  • 유병철;최영돈;윤강식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.39-56
    • /
    • 1988
  • In this study, the computer program was developed to predict the engine performances and exhaust emissions of a 4-cylinder 4-stroke cycle ignition engine including intake and exhaust system. The simulation models applied to each process were as follows. For the combustion process, two zone model which requires only one empirical constant was applied, and for the gas exchange process, the method of characteristics that allows the calculations of the time variation and spatial variation of properties along the pipes was used. Constant pressure perfect mixing model was applied to take into account of the interaction at manifold branches. To predict exhaust emissions, twelve chemical species were considered to be present in combustion products. These species were calculated through equilibrium thermodynamics and kinetic theory. The empirical constants reduced to least number as possible were determined through the comparison with the experimental indicator diagram of one particular operating condition and these constants were applied to other operating conditions. The predicted performances and emissions were compared with the experimental results over the wide range of operating conditions.

  • PDF

Performance Analysis of Adaptive Bandwidth PLL According to Board Design (보드 설계에 따른 Adaptive Bandwidth PLL의 성능 분석)

  • Son, Young-Sang;Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.146-153
    • /
    • 2008
  • In this paper, a integrated phase-locked loop(PLL) as a clock multiphase generator for a high speed serial link is designed. The designed PLL keeps the same bandwidth and damping factor by using programmable current mirror in the whole operation frequency range. Also, the close-loop transfer function and VCO's phase-noise transfer function of the designed PLL are obtained with circuit netlists. The self impedance on board-mounted chip is calculated according to sizes and positions of decoupling capacitors. Especially, the detailed self-impedance analysis is carried out between frequency ranges represented the maximum gain in the close-loop transfer function and the maximum gain in the VCO's phase noise transfer function. We shows PLL's jitter characteristics by decoupling capacitor's sizes and positions from this result. The designed PLL has the wide operating range of 0.4GHz to 2GHz in operating voltage of 1.8V and it is designed 0.18-um CMOS process. The reference clock is 100MHz and PLL power consumption is 17.28mW in 1.2GHz.

Design of Temperature based Gain Scheduled Controller for Wide Temperature Variation (게인 스케줄링을 이용한 광대역 온도제어기의 설계)

  • Jeong, Jae Hyeon;Kim, Jung Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.831-838
    • /
    • 2013
  • This paper focused on the design of an efficient temperature controller for a plant with a wide range of operating temperatures. The greater the temperature difference a plant has, the larger the nonlinearity it is exposed to in terms of heat transfer. For this reason, we divided the temperature range into five sections, and each was modeled using ARMAX(auto regressive moving average exogenous). The movement of the dominant poles of the sliced system was analyzed and, based on the variation in the system parameters with temperature, optimal control parameters were obtained through simulation and experiments. From the configurations for each section of the temperature range, a temperature-based gain-scheduled controller (TBGSC) was designed for parameter variation of the plant. Experiments showed that the TBGSC resulted in improved performance compared with an existing proportional integral derivative (PID) controller.