• Title/Summary/Keyword: Wheel Weight

Search Result 209, Processing Time 0.032 seconds

A Study of Adhesive Effect Estimation using Anti-slip Control Algorithm (Anti-slip 제어 알고리즘을 이용한 접착력 추정에 관한 연구)

  • Kim Gil-Dong;Ahn Tae-Ki;Lee Woo-Dong;Lee Ho-Yong;Park Seo-Young
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.626-631
    • /
    • 2004
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force using load torque disturbance observer. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.

  • PDF

Optimum Design of Steel Box Girder Considering Dynamic Characteristics of LRT with Rubber Wheel (경량전철 고무차륜 AGT 하중의 동적특성을 고려한 강박스거더의 단면 최적설계)

  • Lee Hee-Up;Lee Jun S.;Bang Choon-seok;Choi Il-Yoon
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1197-1204
    • /
    • 2004
  • The metropolitan cities and operation companies of urban transit railway are driving to construct the LRT(light rail transit) system because of the advantage of construction cost and environmental serviceability. This study suggests the optimal design method of steel box girder considering dynamic characteristics of LRT with rubber wheel. The behavior and design constraints are formulated based on the structural design criteria for LRT. Genetic algorithm is applied to the minimum weight design of structural system. A typical example is solved to illustrate the applicability of the proposed minimization algorithm. From the results of application example, the optimum design of steel box girder is successfully accomplished. Therefore, this system can act as a consultant to assist novice designers in the design of steel box girder for LRT with rubber wheel.

  • PDF

A Study on the Driving Trajectory of AGV for Container Transport (컨테이너 운송용 AGV의 운동궤적에 관한 연구)

  • Park Jeong-Bo;Kim Min-Ju;Lee Seung-Soo;Kim Joong-Wan;Jeon Eon-Chan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.5
    • /
    • pp.96-102
    • /
    • 2004
  • In this study, we have developed the simulation tool in order to investigate driving trajectory of AGV for container transport. AGV for container transport is different from the indoor AGV in that it is a large size structure at being loaded the weight of 40 ton. and AGV for container transport is applied to front wheel steering, rear wheel steering, all wheel steering, and crap steering. Therefore, we have developed the simulation tool considering dynamic problems and a center of turning in accordance with fourth ways of steering mode. As the result of this study, we have confirmed that this tool is useful and cost-effective in the dynamic analysis or large size vehicles. Also, it is useful to calculate the minimum radius of turning for large size vehicles.

Anti-Slip Control by Adhesion Effort Estimation of Railway Vehicle (철도차량장치의 점착력 추정에 의한 Anti-Slip 제어)

  • 김길동;이호용;안태기;홍재성;한석윤;전기영
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.257-264
    • /
    • 2003
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force using load torque disturbance observer. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.

A Study on Driving Trajectory of AGV for Container Transport (컨테이너 운송용 AGV의 운동궤적에 관한 연구)

  • Lee, Ji-Yong;Kim, Min-Ju;Lee, Seung-Soo;Kim, Joong-Wan;Jeon, Eon-Chan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1076-1081
    • /
    • 2004
  • In this study, we have developed the simulation tool in order to investigate driving trajectory of AGV for container transport. AGV for container transport is different from the indoor AGV in that it is a large size structure at being loaded the weight of 40 ton. And AGV for container transport is applied to front wheel steering, rear wheel steering, all wheel steering, and crap steering. Therefore, we have developed the simulation tool considering dynamic problems and center of turning in accordance with four way of steering modes. Throughout some computer simulations, we have confirmed that this tool is useful to analysis dynamic problems and to calculate minimum radius of turning for large size vehicles.

  • PDF

Structure Analysis of Rubber Panel by Truck Weight (고무재를 사용한 판재의 차량하중에 의한 구조해석)

  • 윤성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.998-1002
    • /
    • 2004
  • As the public use part of the railway and the road, the railway crossing is important to work properly by two transportation means. Also, It is important to provide the good face of friction on the railway crossing in aspect of protecting the railway crossing accident. Lately, Many kinds of the material are used for railway crossing panel. As they have a various fault, it was studied to analyze the structural action of the new material, rubber panel. This paper analyzed stress and displacement by truck passing weight using the Finite Element Modeling.

  • PDF

Process Design of Automobile Steering Yoke with burring (버링 가공을 이용한 자동차 요크 제품의 가공 공정 설계)

  • 김병민
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.151-154
    • /
    • 2000
  • The yoke is used for joining the mechanical element of a spider and shaft in the steering system of automobiles. Conventional yoke forming processes are too complicated such as 4 stages bending and forming. The weight of yoke is also heavy than other components. New process is necessary to reduce the product weight to improve the strength and to reduce the costs. Process designed to reduce number of forming stages and to reduce its weight. To check the strength the stress analyses are performed between conventional yoke and developed one.

  • PDF

Development of CFRP Tubes for the Light-Weight Propeller Shaft of 4WD SUV Vehicles (4륜구동 SUV 차량용 구동축 경량화를 위한 CFRP 튜브 개발)

  • Na, Hae-Jung;Chun, Jin-Sung;Cho, Kyu-Sang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.32-38
    • /
    • 2018
  • In this study, the one-piece propeller shaft composed of carbon/epoxy was designed and manufactured for 4 wheel drive automobiles that can bear the target torsional torque performance of 3.5kN.m. For the CFRP tube, braiding machine was used to weaving carbon fiber and it was formed the braided yarns with the braid angle ${\pm}45^{\circ}$ and axial yarns to improve strength of the lengthwise direction. The final CFRP tube of propeller shaft was evaluated through the torsional torque test. The CFRP propeller shaft satisfied requirement of the target torsional maximum torque of 3.5kN.m. Also, it was found that the one-piece composite propeller shaft with CFRP tube had 30% weight saving effect compared with a two-piece steel propeller shaft.

Lateral Vibration Analysis for Design Parameter of the Scale Model of a Railway Vehicle (축소형 철도차량의 설계변수에 따른 횡진동 해석)

  • Lee, Seung-Il;Choi, Yeon-Sun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1231-1237
    • /
    • 2006
  • The vibration of a running railway vehicle can be classified on lateral, longitudinal and vertical motions. The important factor on the stability and ride quality of a railway vehicle is the lateral motion. The contact between wheel and rail with conicity influences strongly on the lateral motion. In this study, an experiment for the vibration of a running railway vehicle was performed using a of the scale model of a railway vehicle. Also, the effects on the car-body, bogie and wheelset were examined for the weight and the stiffness of the second suspension system. The experimental results showed that the lateral vibration increases as the wheel conicity and stiffness of the second suspension system increase. And the lateral vibration of the bogie increases as the mass ratio between car-body and bogie increases. Also, the lateral vibration of the wheel becomes high at low speed, while the wheel of 1/20 conicity makes severe vibration at high speed running.

Effect of Cast Microstructure on Fatigue Behaviors of A356 Aluminum Alloy for Automotive Wheel (자동차휠용 A356 알루미늄 합금의 주조조직이 피로특성에 미치는 영향)

  • Song, Jeon-Young;Park, Joong-Cheol;Ahn, Yong-Sik
    • Journal of Korea Foundry Society
    • /
    • v.30 no.1
    • /
    • pp.46-51
    • /
    • 2010
  • Recently, automotive industry is attempting to replace steels for automotive parts with light-weight alloys such as aluminum alloy, because of the growing environmental regulations governing exhaust gas and the engine effectiveness of a vehicle. The low cycle fatigue (LCF) and high cycle fatigue (HCF) properties as well as the microstructure and tensile property were investigated on the low pressure cast A356 aluminum alloy wheel, which was followed by T6 heat treatment. The cast microstructure of the alloy influenced significantly on the low cycle and high cycle fatigue behaviors. The rim part of cast aluminum alloy wheel showed higher low cycle and high cycle fatigue strength compared with the spoke part, which should be caused by higher cooling rate of rim part. The spoke part of the wheel showed coarser dendrite arm spacing (DAS) and wide eutectic zone in the microstructure, which resulted in the partial brittle fracture and lower fatigue life time.