컨테이너 운송용 AGV의 운동궤적에 관한 연구

이지용 † ·김민주*·이승수* 김중완**·전언찬**

A Study on Driving Trajectory of AGV for Container Transport

Ji-Yong Lee, Min-Ju Kim, Seung-Soo Lee, Joong-Wan Kim and Eon-Chan Jeon

Key Words: AGV(automatic guided vehicle), Driving trajectory(운동궤적), Minimum radius of turning(최소 회전 반지름)

Abstract

In this study, we have developed the simulation tool in order to investigate driving trajectory of AGV for container transport. AGV for container transport is different from the indoor AGV in that it is a large size structure at being loaded the weight of 40 ton. And AGV for container transport is applied to front wheel steering, rear wheel steering, all wheel steering, and crap steering. Therefore, we have developed the simulation tool considering dynamic problems and center of turning in accordance with four way of steering modes. Throughout some computer simulations, we have confirmed that this tool is useful to analysis dynamic problems and to calculate minimum radius of turning for large size vehicles.

1. 서 론

전 세계적인 항만 물류량 증가와 이로 인한 부두의 자동화가 중요시되고 있다. 항만의 자동화에서 가장 중요한 것이 컨테이너를 이송할 수 있는 무인자동차, 즉 AGV(Automatic guided vehicle)의 개발과 제어이다.

AGV에 대한 국내연구로는 Yang 등¹⁾이 유한 요소법을 이용한 AGV 구조물의 강도해석을 수 행하고, Kye 등²⁻³⁾이 4륜구동·조향 차량의 선회 성능 해석을 위한 Simulation Tool 개발 및

+동아대학교 대학원 기계공학과

E-mail: ppidae@donga.ac.kr

TEL: (051)200-6992 FAX: (051)200-7656

* 동아대학교 기계공학과

** 동아대학교 기계공학과 교수

4WD/4WS 전기 구동 차량의 동역학적 성능해석을 수행한 것들을 들 수 있다. 그리고 Song 등⁴⁾이 AGV시스템의 메커니즘 개량화 연구를 수행하는 등 다양하게 진행되고 있다. 그리고 국외에서는 H. Dugoff 등⁵⁾이 타이어 거동을 물리적 현상에 근거하여 유도함으로써 차량운동을 시뮬레이션한 경우와 실험적 데이터를 토대로 개발된모델링⁶⁻⁸⁾을 적용한 경우 등이 있다. 하지만 이러한 연구들은 주로 실내 공장용 AGV에 관한 내용으로 야드(yard)에서 운용되는 컨테이너 수송용 AGV에 대한 연구는 전무한 실정이다.

야드용 AGV는 외국에서도 그 예를 찾기 힘든데, 선두주자인 독일을 포함하여 3개국 정도에서 생산하고 있다. 야드용 AGV가 설치되어 운영되고 있는 곳은 네덜란드의 ECT항과 싱가포르의 PSA항을 들 수 있으며, 이들 장비는 독일의 MDF 및 Kamag사가 독점적으로 공급하고 있는실정이다.

이러한 야드용 AGV는 네 가지 형태의 스티어 링(Steering)을 수행하며, 주차 및 컨테이너 적재 를 위한 위치선정시 최소회전반경이 가장 중요한 요소로 작용한다. 하지만 최소회전반경에 대한 연구는 전륜조향에 대한 것만 공개되어 있으며, 네 가지 스티어링 방식에 대한 연구는 전무할 뿐 만 아니라 일반적으로 적용되고 있는 애커먼-장 토식(Ackerman-Jantaud type)은 전륜을 제외한 나머지 방식에는 적용할 수 없다. 따라서 본 연 구에서는 항만의 야드에서 컨테이너 운송용으로 사용되는 AGV의 Steering mode별 운동궤적 및 최소회전반경 등을 자동으로 계산하는 시뮬레이 션 프로그램을 개발하여 이를 AGV 설계의 기초 자료로 제공하고자 한다. 이는 AGV를 제어함에 있어서 상당히 중요한 자료로 이용될 수 있으며, 일반 자동차에도 적용할 수 있다.

2. 야드용 AGV 차량 모델

Fig. 1에 야드용 AGV의 기본 개요를 나타내었다. 컨테이너 운송용 AGV는 전 후의 개념이 존재하지 않으며, 진행방향에 따라 전방, 후방이 결정된다.

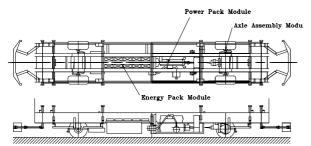


Fig. 1 Schematic of AGV for container transport

Fig. 2에 야드용 AGV의 외형 프레임을 나타내었으며, 그 제원을 도시하였다. 일반적으로 연구되는 실내용 AGV와 달리 본 연구에서 사용한모델은 40 ton의 하중을 받는 대형 구조물로 볼수 있다. 그리고 Table 1에 야드용 AGV에 적용되는 네 가지 스티어링 모드를 나타내었다.

전륜조향(Front wheel steering)과 후륜조향(Rear wheel steering), 전륜조향(All wheel steering), 그리고 크랩조향을 전부 적용한다.

Overall length: 17,200 mmWheel base: 10,000 mm

- Overall width: 3,000 mmTread: 2,212 mm
- · Steering 각속도 (20, 25, 30, 35°/s)
- · Travel Speed (0~6 m/s), Steering의 최대 각도= 35°

Fig. 2 AGV frame (units : m)

Table 1 Four steering mode types for AGV driving condition.

Mode 1	Mode 2	Mode 3	Mode 4
Front Wheel	Rear Wheel	All Wheel	Crab
Steering	Steering	Steering	Steering
//		//	//
1 1	//	\ \	//

본 논문에서 고려된 차량모델을 유도하기 위해 다음과 같은 가정을 하였다.

- 1) 차량은 평평한 노면(Even road)위를 주행하는 것으로 가정한다.
- 2) 횡풍에 의한 요잉 모멘트는 차량중량 및 컨테이너 중량을 고려하여 없는 것으로 한다.
- 3) 차량은 직진운동, 횡운동, 요잉운동 및 롤 운동을 할 수 있으나 피칭 및 히빙운동은 무시하다.

3. AGV streering에 따른 운동해석

3.1 휠을 steering한 후 운동상태 변화

Fig. 3에서 ω_{wh} 는 steering 각속도 [rad/s], θ_{wh} 는 평균 steering 각도 [rad], V는 AGV의

주행속도 [m/s], ω_b 는 AGV body 회전 각속도 [rad/s] 를 의미한다.

휠 변수의 초기조건들은 영이라고 가정하고, 휠 의 각속도를 ω_{wh} 라고 하면, 휠의 회전각 θ_{wk} 값으로 회전하므로, 휠이 회전한 각도는

$$\theta_{wh} = \omega_{wh} t \tag{1}$$

front 휠의 속도 V를 V_x , V_y 로 분해하면 다 음과 같다.

$$V_{x} = V \sin(\theta_{wh})$$

$$V_{y} = V \cos(\theta_{wh})$$
(2)

따라서 AGV 운동은 V_{v} 의 병진운동과 V_{x} 의 속 도성분으로 인한 회전운동이 동시에 일어난다.

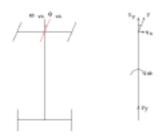
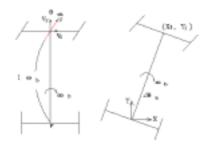



Fig. 3 Velocity components of interesting body points for steering

3.2 병진 운동과 회전운동

AGV의 운동을 일반 강체운동으로 고려하여 해 석할 수 있다. 일반 강체운동은 병진운동과 회전 운동으로 분해하여 생각하면 편리하다.

Fig. 4 Kinematic analysis for AGV after Δt

3.2.1 병진운동

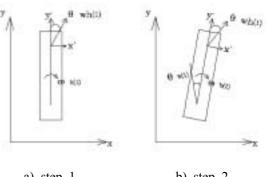
Fig. 4에서 보는 바와 같이 front 휠은 $X_1 = V_x \cdot \varDelta t$, $Y_1 = V_y \cdot \varDelta t$ 만큼 병진이동

3.2.2 회전운동

AGV는 x축의 속도성분 V_x 에 의해서 rear 휠 의 윤간거리의 중심점 p에 대하여 회전한다. 이 때 AGV가 회전하는 각속도와 샘플링 시간에서 의 각도변화는 다음 식과 같다.

$$\omega_b = \frac{V_x}{l_{wheel base}} [rad/s]$$
 (3)

$$\Delta\theta_b = \omega_b \cdot \Delta t \tag{4}$$


4. front 휠의 위치이동 및 회전운동 메카니즘

front 휠의 위치이동은 Fig. 5와 같이 설명할 수 있다. step 1과 같이 steering angle $(\theta_{wh})=0$ 인 상태에서 Δt 만큼 시간이 경과한 후의 front 휠의 위치는 다음과 같다.

식 (1)에서 $\theta_{wh} = \omega_{wh} \cdot \Delta t$ 만큼 휠을 steering 시킨 후 전진하면 front 휠의 다음위치는 식 (2)를 사용하여 $X_1 = V_x \cdot \Delta t \ (m), \quad Y_1 = V_y \cdot \Delta t \ (m)$ 만큼 이동되어 있음을 알 수 있다.

식 (3)의 공식을 사용하여 $\omega_{k}(1)$ 을 구할수 있 다. $\omega_b(1)$ 에 의하여 $\Delta\theta_b(1) = \omega_b(1) \cdot \Delta t$ 이고, $\theta_b(1)$ 만큼 회전한 step 2의 상태가 된다. 그러므로

$$\theta_b(1) = \theta_b(0) + \varDelta\theta_b(1) \tag{5}$$
이 된다.

a) step 1

b) step 2

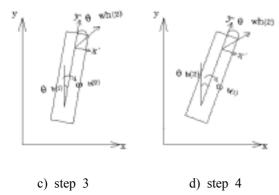


Fig. 5 Position movement of front wheel

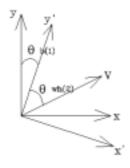


Fig. 6 Rotation of coordinate system

step 3에서와 같이 $\theta_{wh}(2)$ 만큼 steering 후 전진시키면 front 휠의 위치는 $X_2^{'}=V \times \sin(\theta_{wh}(2)) \cdot \Delta t$, $Y_2^{'}=V \times \cos(\theta_{wh}(2)) \cdot \Delta t$ 만큼 이동시킨 후 좌표축 $X_1^{'}$, $Y_2^{'}$ 을 $\theta_b(1)$ 만큼 회전시킨 값이 된다. 따라서

$$\begin{bmatrix} X_2 \\ Y_2 \end{bmatrix} = \begin{bmatrix} \cos(\theta_b(1)) & -\sin(\theta_b(1)) \\ \sin(\theta_b(1)) & \cos(\theta_b(1)) \end{bmatrix} \begin{bmatrix} X_2 \\ Y_2 \end{bmatrix}$$
 (6)

식 (6)과 같이 좌표축의 회전 결과가 step 4와 같은 그림이 된다.

$$\theta_b(2) = \theta_b(1) + \omega_b(2) \cdot \Delta t = \theta_b(1) + \Delta \theta_b(2) \tag{7}$$

step 4는 front 휠이 X_2 , Y_2 만큼 위치 이동 한 후 AGV body가 $\theta_b(2)$ 로 회전된 상태이다.

5. AGV body의 Rotation 및 Translation

front 휠의 임의의 좌표값이 (X(i), Y(i)) 라고 가정할 때 AGV의 body 각도가 $\theta_b(i)$ 이므로 front 휠을 중심점으로 corner point가 $\theta_b(i)$ 만큼 회전됨을 알 수 있다. AGV body의 회전을 구하기 위한 정의를 Fig. 7에 나타내었다.

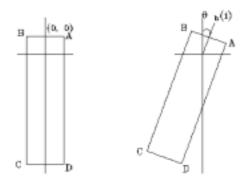
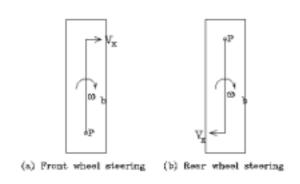


Fig. 7 Rotation of corner points.

·A: right front corner
·B: left front corner
·C: left rear corner
·D: right front corner

따라서 AGV corner point의 궤적은


$$\begin{bmatrix} X_A(i) \\ Y_A(i) \end{bmatrix} = \begin{bmatrix} \cos(-\theta_b(i)) & -\sin(-\theta_b(i)) \\ \sin(-\theta_b(i)) & \cos(-\theta_b(i)) \end{bmatrix} \begin{bmatrix} X_A(1) \\ Y_A(1) \end{bmatrix} + \begin{bmatrix} X_{f}(i) \\ Y_{ff}(i) \end{bmatrix}$$
(8)
$$\begin{bmatrix} X_B(i) \\ Y_B(i) \end{bmatrix} = \begin{bmatrix} \cos(-\theta_b(i)) & -\sin(-\theta_b(i)) \\ \sin(-\theta_b(i)) & \cos(-\theta_b(i)) \end{bmatrix} \begin{bmatrix} X_B(1) \\ Y_B(1) \end{bmatrix} + \begin{bmatrix} X_{f}(i) \\ Y_{ff}(i) \end{bmatrix}$$
(9)
$$\begin{bmatrix} X_C(i) \\ Y_C(i) \end{bmatrix} = \begin{bmatrix} \cos(-\theta_b(i)) & -\sin(-\theta_b(i)) \\ \sin(-\theta_b(i)) & \cos(-\theta_b(i)) \end{bmatrix} \begin{bmatrix} X_C(1) \\ Y_C(1) \end{bmatrix} + \begin{bmatrix} X_{f}(i) \\ Y_{ff}(i) \end{bmatrix}$$
(10)
$$\begin{bmatrix} X_D(i) \\ D(i) \end{bmatrix} = \begin{bmatrix} \cos(-\theta_b(i)) & -\sin(-\theta_b(i)) \\ \sin(-\theta_b(i)) & \cos(-\theta_b(i)) \end{bmatrix} \begin{bmatrix} X_D(1) \\ Y_D(1) \end{bmatrix} + \begin{bmatrix} X_{ff}(i) \\ Y_{ff}(i) \end{bmatrix}$$
(11)

이다.

6. Steering mode에 따른 회전중심의 변화

Fig. 8에 Steering mode에 따른 회전중심의 변화를 나타내었다. front wheel steering mode에서는 회전중심은 뒷바퀴의 윤간거리의 중앙이 회전중심이 되고, rear wheel steering mode에서는 회전중심은 앞바퀴의 윤간거리의 중앙이 회전중심이 된다. 그리고 all wheel steering mode에서는 회전중심은 축간거리의 중앙이 회전중심이 된다. 그러나 crab steering mode에서는 회전중심이 없고, AGV는 단지 평행하게 비스듬히 이동하게

된다.

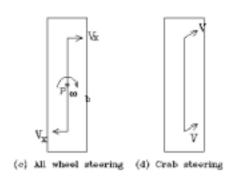


Fig. 8 Rotation center of four steering modes

7. 시뮬레이션 프로그램

본 연구에서는 상기한 수식들을 토대로 네 가지 steering mode별로 최소선회 반지름 및 최대 선회반지름, 그리고 주행경로 및 AGV body의 운동궤적을 구하는 프로그램을 개발하였다. 프로그램 개발에는 MATLAB의 Simulink를 사용하였으며, 화면 구성은 Fig. 9와 같다.

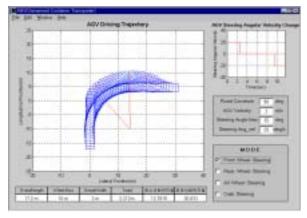


Fig. 9 Front Wheel Steering

Fig. 9는 front wheel steering mode에서 AGV 의 운동궤적 등을 나타낸 것이다. 우측 상단부에 는 steering 각속도의 변화를 나타내며, 입력요소 들의 선정이 끝난 후 모드를 선택하면 화면과 같 은 AGV body의 운동궤적과 최소 선회반지름 및 최대 선회반지름을 계산, 출력하는 형태로 프로 그래밍 되어 있다. 야드용 AGV 차량의 최소회전 반지름은 최대 선회 반지름에 차륜거리(Tread) 2.212 m를 적용하여 구할 수 있으며, 23.045 m이 다. 그리고 AGV 전륜부의 회전운동에 후륜부가 추종하는 형태로 운동궤적이 생성됨을 알 수 있 다. 이와 달리 Fig. 10의 Rear wheel steering mode에서는 후륜부의 회전운동에 전륜부가 수용 하는 형태를 띈다. 그리고 최소 회전 반지름은 20.4263 m로 front wheel steering mode에 비해 감소함을 알 수 있다.

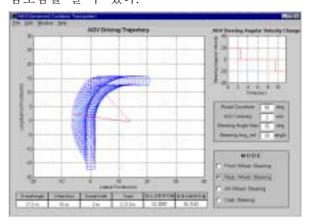


Fig. 10 Rear Wheel Steering

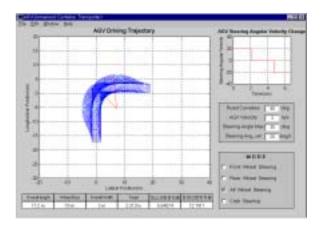


Fig. 11 All Wheel Steering

Fig. 11은 All wheel steering mode에 따른 AGV의 운동궤적 및 최소 선회반지름과 최대 선회 반지름 등을 나타내고 있다. AGV 차량의 최

소회전반지름은 14.4031 m이다. 그리고 차량진행 방향을 90°회전시킬 때 AGV steering 각속도의 변화시간이 상당히 감소함을 알 수 있다.

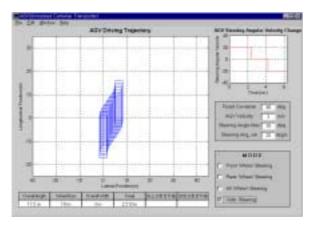


Fig. 12 Crap steering

Fig. 12는 Crap steering mode에 따른 AGV의 운동궤적을 나타내고 있다. 크랩조향은 주차 및 위치조정시 사용되는 모드로 최소회전반경은 의미가 없으며, AGV steering 각속도의 변화에서 초기 steering시간이 길게 나타나는 특징을 보인다.

8. 결 론

이상의 연구를 통하여 다음과 같은 결론을 얻었다.

- 1) 시뮬레이션 툴은 MATLAB의 Simulink를 이 용하여 제작되었으며, 야드용 AGV에 적용하 였다.
- 2) 개발된 시뮬레이션 툴은 그래픽 환경을 제공 하여 사용자가 친숙하게 접근할 수 있으며, 입력 데이터와 출력데이터를 편리하게 처리 할 수 있다.
- 3) 휠을 조향한 후 운동상태 변화와 조향된 휠의 위치이동 및 회전 메커니즘을 밝혀냈으며, AGV 본체의 회전 및 이송궤적, 그리고 조향모드에 따른 회전중심의 변화 등을 정의하였다.
- 4) 야드용 AGV와 같은 대형차량의 운동궤적 및 최소회전 반지름을 구하는 방법을 개발하 였으며, Steering mode별 조향 각속도의 변 화를 예측할 수 있었다.

참고문헌

- (1) Yang, Y. S., Lee, S. H. and Lee, C. S., 1998, "A Strength Analysis of the AGV Structure using the Finite Element Method", *Journal of the Korean Society of Machine Tool Engineers*, Vol. 7, No. 3, pp. 37 ~ 42.
- (2) Kye, G. T., Kim, J. Y. and Huh, K. S., 1997, "Development of a Simulation Tool for the Cornering Performance Analysis of 4WD/4WS Vehicles", *KSAE*, Vol. 5, No. 1, pp. 195 ~ 206.
- (3) Kim, J. Y., Kye, K. G., Park, K. S. and Huh, K. S., 1996, "Dynamic Performance Analysis for 4WD/4Ws Eletric-driven Vehicles", *KSAE*, Vol. 4, No. 2, pp. $209^{\sim} 220$
- (4) Song, J. Y., Lee, S. W. and Kim, K. H, 2001, "A Study on Improved Mechanism of AGV System", *Journal of Korean Society of Precision Engineering*, Vol. 18, No. 2, pp. 132 ~ 138.
- (5) H. Dugoff, P. S. Fancher, L. Segel, 1970, "An Analysis of Tire Traction Properties and Their Influence on Vehicle Dynamic Performance", *SAE Transactions*, 79: 341-366, SAE paper No. 700377
- (6) L. D. Metz, "Dynamic of Four Wheel Steer Off-Highway Vehicles", 1993, SAE 930765
- (7) H. Higasa, F. Ishikawa, H. Nasu and S. Hayashi, "Vehicle Motion Control of the Four Wheel in Motor Drive Electric Vehicles", 1992, *The Society of Technic for Automobile*.
- (8) N. E. Sanchez, "Nonlinear Dynamics and Control of a Four-Wheel Steering Vehicle using Symbolic-Numerical Approach", 1994, *Int. J. of Vehicle Design*, Vol. 15, No. 1/2, pp. 81 ~ 98.