• Title/Summary/Keyword: Wheel Slip

Search Result 225, Processing Time 0.028 seconds

Absolute Vehicle Speed Estimation using Fuzzy Logic (퍼지로직을 이용한 차량절대속도 추정)

  • ;;J. K. Hedrick
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.179-186
    • /
    • 2002
  • The absolute longitudinal speed of a vehicle is estimated by using vehicle acceleration data from an accelerometer and wheel speed data from standard 50-tooth antiknock braking system wheel speed sensors. An intuitive solution to this problem is, "When wheel slip is low, calculate absolute velocities from the wheel speeds; when wheel slip is high, calculate absolute velocity by integrating the accelerometer." Fuzzy logic is introduced to implement the above idea and a new algorithm of "modified velocities with step integration" is proposed. This algorithm is verified experimentally to estimate speed of a vehicle, and is also shown to estimate absolute longitudinal vehicle speed with a 6% worst-case error during a hard braking maneuver lasting three seconds.

Mobile Robot Localization Using Optical Flow Sensors

  • Lee, Soo-Yong;Song, Jae-Bok
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.485-493
    • /
    • 2004
  • Open-loop position estimation methods are commonly used in mobile robot applications. Their strength lies in the speed and simplicity with which an estimated position is determined. However, these methods can lead to inaccurate or unreliable estimates. Two position estimation methods are developed in this paper, one using a single optical flow sensor and a second using two optical sensors. The first method can accurately estimate position under ideal conditions and also when wheel slip perpendicular to the axis of the wheel occurs. The second method can accurately estimate position even when wheel slip parallel to the axis of the wheel occurs. Location of the sensors is investigated in order to minimize errors caused by inaccurate sensor readings. Finally, a method is implemented and tested using a potential field based navigation scheme. Estimates of position were found to be as accurate as dead-reckoning in ideal conditions and much more accurate in cases where wheel slip occurs.

Design of a Wheel Test Bed for a Planetary Exploration Rover and Driving Experiment (행성탐사 로버 휠 테스트 베드 설계 및 주행 실험)

  • Kim, Kun-Jung;Kim, Seong-Hwan;Yu, Kee-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.372-377
    • /
    • 2015
  • In this paper, the consideration factors that affect the actual driving of a rover wheel was examined based on the wheel-terrain model. For the evaluation of driving performance in a real environment, the test bed of the rover wheel consists of the driving part of the wheel and sensing part of the various parameters was designed and assembled. Using the test bed, the preliminary driving experiment concerning the slip ratio, sinkage, and friction force according to the rotational velocity and the shape of the wheel were carried out and evaluated. The wheel test bed and the experiment results are expected to contribute to finding the optimal result in the designing of the wheel shape and the planning of the driving conditions through further study.

Slip Ratio Reduction and Moving Balance Control of a Ball-bot using Mecanum Wheel (메카넘 휠을 이용한 볼-봇의 슬립률 감소와 균형 및 주행제어)

  • Park, Young Sik;Kim, Su Jeong;Byun, Soo Kyung;Lee, Jang Myung
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.4
    • /
    • pp.186-192
    • /
    • 2015
  • This paper proposes a robust balance and driving control for omni-directional ball robot(generally called ball-bot) with two axis mecanum wheel. Slip between ball and mecanum wheel actuator inevitably occurs along diagonal axis due to its instantaneous strong torque. In order to reduce and saturate slip, exact distance calculation scheme especially for rotational movement is essential. So this research solved Euler-Lagrange dynamics for proposed two axis ball robot based on practical mechanical modeling. Robust balance control was carried out by PID controller according to the pitch and roll angles of ball robot by using sensor fusion between AHRS and wheel encoder. Proposed PID controller enhances stability by reducing steady state error and settling time. Proposed slip control algorithm for omni-directional ball robot has been demonstrated by experiments for balance control and arbitrary driving control.

Development of Dead Reckoning Algorithm Considering Wheel Slip Ratio for Autonomous Vehicle (자율 주행 차량을 위한 슬립율 기반의 추측항법 알고리즘 개발)

  • Kwon, Jaejoon;Yoo, Wongeun;Lee, Hoonhee;Shin, Dong Ryoung;Park, Kyungtaek;Park, Kihong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.1
    • /
    • pp.99-108
    • /
    • 2014
  • Recently, the interest in autonomous vehicle which is an aggregate of the automotive control technology is increasing. In particular, researches on the self-localization technology that is directly connected with stable driving of autonomous vehicle have been performed. Various dead reckoning technologies which are solutions for resolving the limitation of GPS have been introduced. However, the conventional dead reckoning technologies have two disadvantages to apply on the autonomous vehicle. First one is that the expensive sensors must be equipped additionally. The other one is that the accuracy of self-localization decreases caused by wheel slip when the vehicle's motion changed rapidly. Based on this background, in this paper, the wheel speed sensor which is equipped on most of vehicles was used and the dead reckoning algorithm considering wheel slip ratio was developed for autonomous vehicle. Finally, in order to evaluate the performance of developed algorithm, the various simulation were conducted and the results were compared with the conventional algorithm.

Anti-Slip Control by Adhesion Effort Estimation of Railway Vehicle (철도차량장치의 점착력 추정에 의한 Anti-Slip 제어)

  • 김길동;이호용;안태기;홍재성;한석윤;전기영
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.257-264
    • /
    • 2003
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force using load torque disturbance observer. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.

Slip/Slide Detection Method for the Railway Vehicles using Rotary Type Speed Sensor (회전형 속도검출기를 사용한 철도차량에서 공전, 활주의 검출방법)

  • Lee, Eul-Jae;Kim, Young-Seok;Yoon, Yong-Ki;Lee, Jae-Ho;Ryu, Sang-Hwan;Jeong, Rak-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.405-407
    • /
    • 2000
  • The most generally implemented method to detect the ground speed of the railway vehicles is to use the rotary type speed sensor attached to wheel axle. The Slip or sliding phenomenon on the railway vehicles occurs frequently caused by the weak viscosity of the wheel. Thus, precisely to control the car, the slip/sliding detection system is required. In this paper we proposed for the speed data management system, which uses rotary type speed sensor. Proposed speed management system can detect the slip/sliding with wheel axle as well as correct the generated speed error during in error time, to provide accurate speed and precise location data. The effectiveness for adapting to the railway system is clarified by the computer simulation.

  • PDF

Anti-Slip Control and Speed Sensor-less Vector Control of the Railway Vehicle (철도차량의 Anti-Slip 제어 및 속도센서리스 벡터제어)

  • Jho Jeong-Min;Kim Gil-Dong
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.3
    • /
    • pp.216-221
    • /
    • 2005
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the wright of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control based on disturbance observer and sensor-less vector control. The numerical simulation and experimental results point out that the proposed re-adhesion control system has the desired driving wheel torque response for the tested bogie system of electric coach. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.

Development and Evaluation of ESP Systems for Enhancement of Vehicle Stability during Cornering (II) (차량의 선회시 주행 안정성 강화를 위한 ESP 시스템 개발 및 성능 평가 (II))

  • Song, Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1551-1556
    • /
    • 2006
  • Two yaw motion control systems that improve a vehicle lateral stability are proposed in this study: a rear wheel steering yaw motion controller (SESP) and an enhanced rear wheel steering yaw motion controller (ESESP). A SESP controls the rear wheels, while an ESESP steers the rear wheels and front outer wheel to allow the yaw rate to track the reference yaw rate. A 15 degree-of-freedom vehicle model, simplified steering system model, and driver model are used to evaluate the proposed SESP and ESESP. A robust anti-lock braking system (ABS) controller is also designed and developed. The performance of the SESP and ESESP are evaluated under various road conditions and driving inputs. They reduce the slip angle when braking and steering inputs are applied simultaneously, thereby increasing the controllability and stability of the vehicle on slippery roads.

PERFORMANCE OF A 4-W TRACTOR IN THAILAND FIELD CONDITIONS

  • Kanoksak, Eam-O-Pas
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.506-512
    • /
    • 2000
  • Performance of a four- wheel tractor fabricated by Tongyang Moolsan Co., Ltd, Korea was tested in Thailand during May-June 2000. Wheel slip and field capacity were measured in three fields using different traction devices and implements. The tractor worked satisfactorily in the test conditions. Wheel slip of 26.05-33.63 % and the field capacity of 0.17 - 0.20 ha/hr were observed during plowing operation. Further tractive performance tests using a three-point linkage configuration are recommended in Thailand field conditions. Different designs of cage wheels are recommended to be tested to optimize the tractive performance.

  • PDF