• Title/Summary/Keyword: Wheel Imbalance

Search Result 16, Processing Time 0.029 seconds

Reaction Wheel Disturbance Reduction Method Using Disturbance Measurement Table

  • Cheon, Dong-Ik;Jang, Eun-Jeong;Oh, Hwa-Suk
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.4
    • /
    • pp.311-317
    • /
    • 2011
  • Momentum changing actuators like reaction wheels and control moment gyros are generally used for spacecraft attitude control. This type of actuators produces force and torque disturbances. These disturbances must be reduced since they degrade the quality of spacecraft attitude control. Major disturbances are mainly due to static and dynamic imbalances. This paper gives attention to the reduction of the static and dynamic imbalance. Force/torque measurement system is used to measure the disturbance of the test reaction wheel. An identification method for the location and magnitude of the imbalance is suggested, and the corrections of the imbalance are performed using balancing method. Through balancing, the static and dynamic imbalance is remarkably reduced.

An Experimental Study on Micro-vibration Measurement Methods of a Reaction Wheel (반작용휠의 미소진동 측정법에 관한 실험적 연구)

  • Kim, Dae-Kwan;Oh, Shi-Hwan;Lee, Seon-Ho;Yong, Ki-Lyuk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.9
    • /
    • pp.828-833
    • /
    • 2011
  • A reaction wheel assembly(RWA) is the largest disturbance source that can induce high frequency micro-vibration on an optical payload of satellites. To ensure a tight pointing-stability budget of satellites, the RWA disturbance effect on spacecraft should be accurately analyzed and evaluated for whole design phases. For this purpose, the micro-vibration disturbance of RWA should be precisely measured. In the present study, two measurement methods on RWA micro-vibration disturbances are compared and investigated. One is a free run-down speed test and the other is a constant speed test. The micro-vibration data measured by the two methods are analyzed in terms of spectrum characteristics, static and dynamic imbalance values, and root sum square(RSS) values. The analysis results show that both methods can measure very similar results in time and frequency domains and that the free run-down speed method is more adequate in respects to wheel friction modeling, noise rejection of imbalance and RSS peak evaluation.

Study on the Dynamic Behavior Characteristics due to the Unbalance High Speed Railway Vehicle Wheel (고속철도차량용 차륜 불평형에 의한 동적 거동 특성 연구)

  • Lee, Seung-Yil;Song, Moon-Shuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.175-181
    • /
    • 2016
  • This occurs when the unbalanced rotating body is inconsistent with the mass center line axis geometric center line. Wheelsets are assembled by a single axle with two wheels and a rotating body of a running railway vehicle. Owing to non-uniformity of the wheel material, the wear, and error of the wheel and axle assembly may cause an imbalance. Wheelsets will suffer the effects of vibrations due to the unbalanced mass, which becomes more pronounced due to the thin and high-speed rotation compared to the shaft diameter This can affect the driving safety and the running behavior of a rail car during high-speed running. Therefore, this study examined this unbalanced wheel using a railway vehicle multibody dynamics analysis tool to assess the impact of the dynamic VI-Rail movement of high-speed railway vehicles. Increasing the extent of wheel imbalance on the analysis confirmed that the critical speed of a railway vehicle bogie is reduced and the high-speed traveling dropped below the vehicle dynamic behaviour. Therefore, the adverse effects of the amount of a wheel imbalance on travel highlight the need for management of wheel imbalances. In addition, the static and dynamic management needs of a wheel imbalance need to be presented to the national rail vehicles operating agency.

The Imbalance Compensation in CMG ('제어모멘트자이로'의 질량불균형 보정)

  • Lee, Jong-Kuk;Song, Tae-Seong;Kang, Jeong-Min;Song, Deok-Ki;Kwon, Jun-Beom;Seo, Joong-Bo;Oh, Hwa-Suk;Cheon, Dong-Ik;Hong, Young-Gon;Lee, Jun-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.11
    • /
    • pp.861-871
    • /
    • 2020
  • Raising the speed of the momentum wheel in the CMG increases the unintended force and torque caused by mass imbalance. This unintended force and torque should be minimized to get the better quality of satellite SAR image because they lead to the vibration of the output image. This paper shows the works on compensating the static imbalance and couple mass imbalance in the CMG wheel. First, the force and torque at the center of mass generated by the mass imbalance were predicted through M&S analysis. Second, the force and torque were estimated similarly through the M&S analysis when the measurement point was moved from the rotation center. Third, the measurement configuration for the force and torque by the mass imbalance was described. Fourth, the change of the force and torque by adding the specified mass to the momentum wheel was observed after comparing the measurements with the results of the M&S. And finally, the effect of the compensation was analyzed by comparing the force and torque before and after the correction while 24Nm class CMG was running in the standby mode.

A Study on the Steering Wheel Vibration affected by the Fastening Torque of the Wheel Mounting Hub Bolts of Steel Wheels (스틸휠의 체결력에 따른 조향휠 진동에 관한 연구)

  • 안세진;정의봉;유완석;김명규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.189-195
    • /
    • 2003
  • The steel wheels are widely used in the passenger cars because of their low cost of production although the aluminum wheels have many advantages in their performance and appearance. It is known that the steering wheel vibration with steel wheels is generated more often than one with aluminum wheels. Both the constant velocity driving test and the m up test are carried out in this study to analyze the causes and path of the steering wheel vibration generated from the steel wheels. And this study shows that the steering wheel vibration is affected by the fastening torque of the wheel mounting bolts between the steel wheel and the suspension disk.

RWA Disturbance Effects on the LOS stability (반작용 휠 외란의 시야선 안정성 영향)

  • Lee, Sang-Wook;Kim, Dong-Hoon;Cheon, Dong-Ik;Oh, Hwa-Suk;Kim, Eung-Hyun;Kim, Gyu-Sun
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.1
    • /
    • pp.13-16
    • /
    • 2008
  • The line of sight(LOS) is affected by the vibration of spacecraft. It is necessary to predict the effect of disturbance on LOS stability. Reaction wheel assembly is anticipated to be the largest disturbance source on spacecraft. The disturbance which is occurred mainly due to the mass imbalance is analyzed with harmonic numbers. The accuracy and stability are verified by probability density function with dynamic equation of the satellite motion.

  • PDF

Experimental Study on Effects of Speed Error Disturbance on Reaction Wheel Control (속도 오차 외란이 반작용 휠 제어에 미치는 영향에 관한 실험적 연구)

  • Kim, Jichul;Lee, Hyungjun;Yoo, Jihoon;Oh, Hwasuk
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.95-102
    • /
    • 2016
  • There are many possible disturbance sources on such a spacecraft, but reaction wheel assembly (RWA) which is generally used for spacecraft attitude control is anticipated to be the largest. These effects on degradation of performance of spacecraft such as attitude stability. In reaction wheel, disturbance caused by imbalance and speed error. It is hard to emulate speed error disturbance because it is not coincide with wheel frequency. This paper concentrates on emulating and analyzing the speed error disturbance. Firstly, classify the causes that lead to speed error disturbance which generate RPM fluctuation. Secondly, simulated with disturbance driver module and reaction wheel assembly which are developed by Spacecraft Control Lab. Experimental investigations have been carried out to test the disturbance emulator module as a disturbance generator for RWA. Measurements and test have been conducted on various fault. Frequency analysis of test data show that speed error disturbance effects on wheel settling wheel speed or fluctuation type.

Rotordynamic Analysis of Automotive Turbochargers Supported on Ball Bearings and Squeeze Film Dampers in Series: Effect of Squeeze Film Damper Design Parameters and Rotor Imbalances (볼 베어링과 스퀴즈 필름 댐퍼로 지지되는 차량용 터보차저의 회전체동역학 해석: 스퀴즈 필름 댐퍼 설계 인자와 회전체 불균형 질량의 영향)

  • Kim, Kyuman;Ryu, Keun
    • Tribology and Lubricants
    • /
    • v.34 no.1
    • /
    • pp.9-15
    • /
    • 2018
  • Modern high-performance automotive turbochargers (TCs) implement ceramic hybrid angular contact ball bearings in series with squeeze film dampers (SFDs) to enhance transient responses, thereby reducing the overall emission levels. The current study predicts the rotordynamic responses of the commercial automotive TCs (compressor wheel diameter = ~53 mm, turbine wheel diameter = ~43 mm, and shaft diameter at the bearing locations = ~7 mm) supported on ball bearings and SFDs for various design parameters of SFDs, including radial clearance, axial length, lubricant viscosity, and rotor imbalance conditions (i.e., amplitudes and phase angles) while increasing rotor speed up to 150 krpm. This study validates the predictive rotor finite element model against measurements of mass, polar and transverse moments of inertia, and free-free mode natural frequencies and mode shapes. A nonlinear rotordynamic model integrates nonlinear force coefficients of SFDs to calculate the transient responses of the TC rotor-bearing system. The predicted results show that SFD radial clearances, as well as phase angles of rotor imbalances, have the paramount effect on the dynamic responses of TC shaft motions.

Analysis of STSAT-3 Jitter due to the Reaction Wheel Disturbance (반작용 휠의 외란에 의한 STSAT-3 지터 분석)

  • Kim, Dong-Hoon;Cheon, Dong-Ik;Oh, Hwa-Suk;Lee, Sangchul;Bang, Hyochoong;Rhee, Seung-Wu
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.3
    • /
    • pp.32-36
    • /
    • 2007
  • When the reaction wheel rotates, the disturbance occurs mainly due to the mass imbalance. It is necessary to predict the effect of disturbance on the attitude stability of the satellite. The disturbance forces and torques are identified and the attitude jitter of the satellite is analyzed depending on the configuration of the wheels. On the analysis the equation of the satellite motion is combined with the translational and rotational dynamics of the wheels. The accuracy of analysis is verified by simulation of STSAT-3 satellite.

  • PDF