• Title/Summary/Keyword: Wet etch

Search Result 143, Processing Time 0.029 seconds

Fabrication of a Pressure Difference Type Gas Flow Sensor using ICP-RIE Technology (ICP-RIE 기술을 이용한 차압형 가스유량센서 제작)

  • Lee, Young-Tae;Ahn, Kang-Ho;Kwon, Yong-Taek;Takao, Hidekuni;Ishida, Makoto
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • In this paper, we fabricated pressure difference type gas flow sensor using only dry etching technology by ICP-RIE(inductive coupled plasma reactive ion etching). The sensor's structure consists of a common shear stress type piezoresistive pressure sensor with an orifice fabricated in the middle of the sensor diaphragm. Generally, structure like diaphragm is fabricated by wet etching technology using TMAH, but we fabricated diaphragm by only dry etching using ICP-RIE. To equalize the thickness of diaphragm we applied insulator($SiO_2$) layer of SOI(Si/$SiO_2$/Si-sub) wafer as delay layer of dry etching. Size of fabricated diaphragm is $1000{\times}1000{\times}7\;{\mu}m^3$ and overall chip $3000{\times}3000{\times}7\;{\mu}m^3$. We measured the variation of output voltage toward the change of gas pressure to analyze characteristics of the fabricated sensor. Sensitivity of fabricated sensor was relatively high as about 1.5mV/V kPa at 1kPa full-scale. Nonlinearity was below 0.5%F.S. Over-pressure range of the fabricated sensor is 100kPa or more.

  • PDF

A Comparative Study on the Precursors for the Atomic Layer Deposition of Silicon Nitride Thin Films (원료물질에 따른 실리콘 질화막의 원자층 증착 특성 비교)

  • Lee Won-Jun;Lee Joo-Hyeon;Lee Yeon-Seong;Rha Sa-Kyun;Park Chong-Ook
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.141-145
    • /
    • 2004
  • Silicon nitride thin films were deposited by atomic layer deposition (ALD) technique in a batch-type reactor by alternating exposures of precursors. XJAKO200414714156408$_4$ or$ SiH_2$$Cl_2$ was used as the Si precursor, $NH_3$ was used as the N precursor, and the deposited films were characterized comparatively. The thickness of the film linearly increased with the number of deposition cycles, so that the thickness of the film can be precisely controlled by adjusting the number of cycles. As compared with the deposition using$ SiCl_4$, the deposition using $SiH_2$$Cl_2$ exhibited larger deposition rate at lower precursor exposures, and the deposited films using $SiH_2$$Cl_2$ had lower wet etch rate in a diluted HF solution. Silicon nitride films with the Si:N ratio of approximately 1:1 were obtained using either Si precursors at $500^{\circ}C$, however, the films deposited using $SiH_2$$Cl_2$ exhibited higher concentration of H as compared with those of the $SiC_4$ case. Silicon nitride thin films deposited by ALD showed similar physical properties, such as composition or integrity, with the silicon nitride films deposited by low-pressure chemical vapor deposition, lowering deposition temperature by more than $200^{\circ}C$.

Laser micromachining of high-aspect-ratio metallic channels for the application to microthermal devices (마이크로 열소자 제작을 위한 고세장비 금속채널의 레이저 가공)

  • Oh, Kwang-Hwan;Lee, Min-Kyu;Jeong, Sung-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.437-446
    • /
    • 2006
  • A fabrication method fur high-aspect-ratio microchannels in stainless steel using laser-assisted thermochemical wet etching is reported in this paper. The fabrication of deep microchannels with an aspect ratio over ten is realized by applying a multiple etching process with an optimization of process conditions. The cross-sectional profile of the microchannels can be adjusted between rectangular and triangular shapes by properly controlling laser power and etchant concentration. Excellent dimensional uniformity is achieved among the channels with little heat-affected area. Microchannels with a width ranging from 15 to $50{\mu}m$ can be fabricated with an aspect ratio of ten and a pitch of 150 m or smaller. The effects of process variables such as laser power, scan speed, and etchant concentration on the fabrication results, including etch width, depth, and cross-sectional profile are closely examined.

Wet Etch Process for the Fabrication of Al Electrodes and Al Microstructures in Surface Micromachining (표면 미세가공에서 Al 전극 및 Al 미세 구조물 제작을 위한 습식 식각 공정)

  • Kim, Sung-Un;Paik, Seung-Joon;Lee, Seung-Ki;Cho, Dong-Il
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.224-232
    • /
    • 2000
  • Aluminum metal process in surface micromachining enables to fabricate Al electrodes or Al structures, which improve electrical characteristics by reducing contact- and line-resistance or makes the whole process to be simple by using oxide as sacrificial layer. However, it is not possible to use conventional sacrificial layer etching process, because HF solution attacks aluminum as well as sacrificial oxide. The mixed solution of BHF and glycerine as an alternative shows the adequate properties to meet with this end. The exact etching properties, however, are sensitively depends on the geometry of the released structure, because the most etching process of sacrificial layer proceeds to the lateral direction in narrow space. Also, the surface roughness of aluminum affects to the etching characteristics. This paper reports experimental results on the effect of microstructure and surface roughness of aluminum to the etching properties. Considering these effects, we propose the optimized etching condition, which can be used practically for the fabrication of aluminum electrodes and microstructures by using standard surface micromachining process without modification or additional process.

  • PDF

Electrical Characterization of Ultrathin $SiO_2$ Films Grown by Thermal Oxidation in $N_2O$ Ambient ($N_2O$ 분위기에서 열산화법으로 성장시킨 $SiO_2$초박막의 전기적 특성)

  • Gang, Seok-Bong;Kim, Seon-U;Byeon, Jeong-Su;Kim, Hyeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.4 no.1
    • /
    • pp.63-74
    • /
    • 1994
  • The ultrathin oxide films less than 100$\AA$ were grown by thermal oxidation in $N_2O$ ambient to improve the controllability of thickness, thickness uniformity, process reproducibility and their electrical properties. Oxidation rate was reduced significantly at very thin region due to the formation of oxynitride layer in $N_2O$ ambient and moreover nitridation of the oxide layer was simultaneously accompanied during growth. The nitrogen incorporation in the grown oxide layer was characterized with the wet chemical etch-rate and ESCA analysis of the grown oxide layer. All the oxides thin films grown in $N_2O$, pure and dilute $O_2$ ambients show Fowler-Nordheim electrical conduction. The electrical characteristics of thin oxide films grown in $N_2O$ such as leakage current, electrical breakdown, interface trap density generation due to the injected electron and reliability were better than those in pure or dilute ambient. These improved properties can be explained by the fact that the weak Si-0 bond is reduced by stress relaxation during oxidation and replacement by strong Si-N bond, and thus the trap sites are reduced.

  • PDF

Improvement in $AI_2O_3$ dielectric behavior by using ozone as an oxidant for the atomic layer deposition technique (ALD법으로 제조된 $AI_2O_3$막의 유전적 특성)

  • 김재범;권덕렬;오기영;이종무
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.3
    • /
    • pp.183-188
    • /
    • 2002
  • In the present study AI$(CH_3)_3)$films were deposited by the ALD technique using trimethylaluminum(TMA) and ozone to improve the quality of the AI$(CH_3)_3)$ films, since the $OH^-$ radicals existing in the AI$(CH_3)_3)$ films deposited using TMA and $H_2O$ degrade the physical and the dielectric properties of the AI$(CH_3)_3)$ film. The XPS analysis results indicate that the $OH^-$ radical concentration in the AI$(CH_3)_3)$film deposited using $O_3$is lower than that using $H_2O$. The etch rate of the AI$(CH_3)_3)$film deposited using $O_3$is also lower than that using $H_2O$, suggesting that the chemical inertness of the former is better than the latter. The MIS capacitor fabricated with the TiN conductor and the $Al_2$O$_3$dielectrics formed using $O_3$offers lower leakage current, better insulating property and smaller flat band voltage shift $({\Delta}V_{FB})$.

The Characteristics of silicon nitride thin films prepared by atomic layer deposition method using $SiH_2Cl_2 and NH_3$ ($SiH_2Cl_2와 NH_3$를 이용하여 원자층 증착법으로 형성된 실리콘 질화막의 특성)

  • 김운중;한창희;나사균;이연승;이원준
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.3
    • /
    • pp.114-119
    • /
    • 2004
  • Silicon Nitride thin films were deposited on p-type Si (100) substrates by atomic layer deposition (ALD) method at $550^{\circ}C$ using alternating exposures of $SiH_2Cl_2$ and $NH_3$, and the physical and electrical propeties of the deposited films were characterized. The thickness of the films was linearly increased with the number of deposition cycles, and the growth rate of the films was 0.13 nm/cycle with the reactant exposures of $3.0\times10^{9}$ L. The silicon nitride thin films deposited by Alf exhibited similar physical properties with the silicon nitride thin films deposited by low-pressure chemical vapor deposition (LPCVD) method in terms of refractive index and wet etch rate, lowering deposition temperature by more than 200 $^{\circ}C$. The ALD films showed the leakage current density of 0.79 nA/$\textrm{cm}^2$ at 3 MV/cm, which is lower than 6.95 nA/$\textrm{cm}^2$ of the LPCVD films under the same condition.

MICROTENSILE BONDING OF ONE-STEP ADHESIVES TO SHEARED AND NON-SHEARED DENTIN (도말층 존재 유무에 따른 One-step 접착 시스템의 미세인장결합강도)

  • Song, Yong-Beom;Jin, Jeong-Hee;Lee, Se-Joon;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.3
    • /
    • pp.299-309
    • /
    • 2002
  • The purposes of this study were to evaluate the microtensile bond strength of one-step adhesives accord ing to various dentin surface treatments and to observe the interface between resin(Z-100$^{TM}$) and dentin under SEM. In this study forty-five non-caries extracted human molars and three adhesive systems were used ; AlI-Bond 2(AB), One-Up Bond F(OU), AQ-Bond(AQ). ; In Group 1, 2, 3, AB was used and tooth surfaces were treated by smearing(S), ultrasonic cleansing(US), etching(E) respectively. In Group 4. 5, 6, One-Up Bond F was used and tooth surfaces were also treated as the same way above. In Groups 7, 8, 9, AQ Bond was used and tooth surfaces wet$.$e treated as the same way. Each specimen was prepared for microtensile bond testing, and were stored for 24hrs in 37$^{\circ}C$ distilled water. After that, microtensile bond strength for each specimen was measured. Specimens were fabricated to examine the failure patterns of interface between resin and dentin and observed under the SEM. The results were as follows ; 1. The results(mean$\pm$SD) of microtensile test were group 1, 25.69$\pm$4.31MPa; group 2, 40.93$\pm$10.94MPa; group 3, 47.65$\pm$8.85MPa; group 4, 35.98$\pm$9.14MPa; group 5, 39.66$\pm$8.45MPa; group 6, 43.26$\pm$13.01MPa; group 7, 25.07$\pm$4.2MPa;group 8, 30.4$\pm$4.74MPa;group 9, 33.61$\pm$7.88MPa. 2. One-Up Bond F was showed the highest value of 36.98$\pm$9.14MPa in dentin surface treatment with smearing, and there were significant differences to the other groups (p<0.05). 3. All-Bond 2 was showed the highest value of 40.93$\pm$10.94MPa in dentin surface treatment with ultra-sonic cleansing, but was no significant difference to One-Up Bond F(p>0.05) 4. All-Bond 2 was showed the highest value of 47.65$\pm$8.85MPa in dentin surface treatment with etch ing(10%phosphoric acid), and there were significant differences to the other groups(p<0.05). 5. All-Bond 2 was showed the highest value of 47.65$\pm$8.85MPa in dentin surface treatment according to manufacture's directions. but was no significant difference to One-Up Bond F(p>0.05). 6. AQ Bond was skewed the lowest microtensile bond strength with various dentin surface treatment, and the were significant differences to the other groups(p<0.05).

Characteristics of Silicon Oxide Thin Films Prepared by Atomic Layer Deposition Using Alternating Exposures of SiH2Cl2 and O3 (SiH2Cl2 와 O3을 이용한 원자층 증착법에 의해 제조된 실리콘 산화막의 특성)

  • Lee Won-Jun;Lee Joo-Hyeon;Han Chang-Hee;Kim Un-Jung;Lee Youn-Seung;Rha Sa-Kyun
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.90-93
    • /
    • 2004
  • Silicon dioxide thin films were deposited on p-type Si (100) substrates by atomic layer deposition (ALD) method using alternating exposures of $SiH_2$$Cl_2$ and $O_3$ at $300^{\circ}C$. $O_3$ was generated by corona discharge inside the delivery line of $O_2$. The oxide film was deposited mainly from $O_3$ not from $O_2$, because the deposited film was not observed without corona discharge under the same process conditions. The growth rate of the deposited films increased linearly with increasing the exposures of $SiH_2$$Cl_2$ and $O_3$ simultaneously, and was saturated at approximately 0.35 nm/cycle with the reactant exposures over $3.6 ${\times}$ 10^{9}$ /L. At a fixed $SiH_2$$Cl_2$ exposure of $1.2 ${\times}$ 10^{9}$L, growth rate increased with $O_3$ exposure and was saturated at approximately 0.28 nm/cycle with $O_3$ exposures over$ 2.4 ${\times}$ 10^{9}$ L. The composition of the deposited film also varied with the exposure of $O_3$. The [O]/[Si] ratio gradually increased up to 2 with increasing the exposure of $O_3$. Finally, the characteristics of ALD films were compared with those of the silicon oxide films deposited by conventional chemical vapor deposition (CVD) methods. The silicon oxide film prepared by ALD at $300^{\circ}C$ showed better stoichiometry and wet etch rate than those of the silicon oxide films deposited by low-pressure CVD (LPCVD) and atmospheric-pressure CVD (APCVD) at the deposition temperatures ranging from 400 to $800^{\circ}C$.

Effect of the additional application of a resin layer on dentin bonding using single-step adhesives (중간층 레진 적용이 단일 접착과정 상아질 접착제의 접착에 미치는 영향)

  • Choi, Seung-Mo;Park, Sang-Hyuk;Choi, Kyung-Kyu;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.4
    • /
    • pp.313-326
    • /
    • 2007
  • The purpose of this study was to prove that an intermediate resin layer (IRL) oan increase the bond strength to dentin by reducing the permeability of single-step adhesives. Flat dentin surfaces were created on buccal and lingual side of freshly extracted third molar using a low-speed diamond saw under copious water flow. Approximately 2.0 mm thick axially sectioned dentin slice was abraded with wet #600 SiC paper. Three single-step self-etch adhesives; Adper Prompt L-Pop (3M ESPE, St Paul, MN, USA), One-Up Bond F (Tokuyama Corp, Tokyo, Japan) and Xeno III (Dentsply, Konstanz, Germany) were used in this study. Each adhesive groups were again subdivided into ten groups by; whether IRL was used or not; whether adhesives were cured with light before application or IRL or not; the mode of composite application. The results of this study were as follows; 1. Bond strength of single-step adhesives increased by an additional coating of intermediate resin layer, and this increasement was statistically signigicant when self-cured composite was used (p < 0.001). 2. When using IRL, there were no difference on bond strengths regardless the curing procedure of single-step adhesives. 3. There were no significant difference on bond strengths between usage of AB2 or SM as an IRL. 4. The thickness of Hybrid layer was correlated with the acidity of adhesive used, and the nanoleakage represented by silver deposits and grains was examined within hybrid and adhesive layer in most of single-step adhesives. 5. Neither thickness of hybrid layer nor nanoleakage were related to bond strength.